

# Entire human tyrosine kinase profiling panel will help to develop the specific kinase inhibitor.

Hiroshi Ishiguro, Yoshimasa Inoue, Yasuyuki Kirii, Hiroshi Ohmoto, Eiji Nishiwaki, Mamoru Matsubara, and Koichi Yokota Carna Biosciences. Inc., Kobe Japan

Protein kinases play critical roles in cell signaling pathways, related to cell proliferation and differentiation. Among more than 500 protein kinases from human genome, 90 tyrosine kinases are predicted based on their sequence analysis. These tyrosine kinases are classified into two types, transmembrane and cytoplasmic type. Former is known as receptor tyrosine kinase (RTK), which functions as mediator of environmental variations to intracellular signals. They are recognized as outstanding drug targets for aberrant cell proliferative diseases and clinically useful kinase inhibitors have been successfully developed. Since these inhibitors are known to have specific target among kinases, it is extremely important to clarify the inhibitory profile of drug candidates. This presentation is to discuss the profiling result of clinically useful tyrosine kinase inhibitors against human tyrosine kinase profiling panel. All human tyrosine kinase genes were cloned and expressed by using insect cell expression system. Most cytoplasmic tyrosine kinases have been obtained as full-length protein and cytoplasmic regions are expressed for most RTKs. For 77 out of 90 tyrosine kinases, in vitro phosphotransferase activities have successfully been confirmed and their assays have been developed for inhibitor profiling. Most of others such as EphB6 and CCK4, are regarded as inactive. Our entire human tyrosine kinase profiling panel (QuickScout<sup>™</sup> TK Comprehensive Panel) is a powerful tool for developing kinase inhibitors with preferable specificity/selectivity.

#### Standard procedure of ELISA.

1) Compound solution, substrate solution containing Mg<sup>2+</sup>/Mn<sup>2+</sup> with or without ATP (w/o ATP for control), and enzyme solution were mixed and incubated in Streptavidin-coated 96-well plate. 2) After the incubation, the reaction was terminated by washing, and before the plate was blocked. 3) Incubation with HRPconjugated antibody was followed by developing with TMB solution, and then read the absorbance at 450 nm.



#### Table 2. Inhibition Patterns of Gleevec and Iressa

Although as it is reported that Gleevec inhibits PDGFRa, PDGFRb, KIT and ABL, Iressa inhibits EGFR, and several other less recognized targets are inhibited by these kinase inhibitors.

ARG, DDR2, FMS, BLK, LCK, LYN(a/b) as Gleevec targets. EphA4, EphA5, EphB4, PDGFRs, LYNa as Iressa targets.

These results are important not only this inhibitions against novel targets may help to predict/explain side-effects of the inhibitors, but also they may indicate novel therapeutic target as in the example of Gleevec, which has been developed and launched by Novartis AG for the treatment of

Philadelphia chromosome positive chronic myeloid leukemia (CML). It's inhibition against Kit revealed the treatment of patients with Kit positive unresectable and/or metastatic malignant gastrointestinal stromal tumors (GIST).

| -                 |               |        |  |
|-------------------|---------------|--------|--|
| pIC <sub>50</sub> | Gleevec       | Iressa |  |
| More than 8       | PDGFRα        | EGFR   |  |
| Between 8 to 7    | KIT<br>PDGFRβ | EphA6  |  |
| Between 7 to 6    | ABL           | HER2   |  |
|                   | ARG           | HER4   |  |
|                   | DDR2          | EphA4  |  |
|                   | FMS           | EphA5  |  |
|                   | BLK           | EphB4  |  |
|                   | LCK           | PDGFRα |  |
|                   | LYNa          | PDGFRβ |  |
|                   | LYNb          | LYNa   |  |



## Figure 1. Profiling results for well known TK inhibitors

Three well known protein (tyrosine) kinase inhibitors were examined against 77 active tyrosine kinases (horizontal axis). Vertical axis indicates  $pIC_{50}$  ( $-log(IC_{50})$ ).

#### Table 1. Seventy seven tyrosine kinases for the panel.

| Name  | Structure          | Name      | Structure              | Name     | Structure          |
|-------|--------------------|-----------|------------------------|----------|--------------------|
| ABL   | Full Length        | FER       | Full Length            | LTK      | Kinase Domain      |
| ACK   | Kinase Domain      | FES       | Full Length            | LYN(a/b) | Full Length        |
| ALK   | Cytoplasmic Domain | FGFR1     | Cytoplasmic Domain     | MER      | Cytoplasmic Domain |
| ARG   | Full length        | FGFR2     | Cytoplasmic Domain     | MET      | Cytoplasmic Domain |
| AXL   | Full Length        | FGFR3     | Cytoplasmic Domain     | MUSK     | Cytoplasmic Domain |
| BLK   | Full Length        | FGFR4     | Cytoplasmic Domain     | PDGFRα   | Cytoplasmic Domain |
| BMX   | Full Length        | FGR       | Full Length            | PDGFRB   | Cytoplasmic Domain |
| BRK   | Full Length        | FLT1      | Cytoplasmic Domain     | PYK2     | Full Length        |
| BTK   | Full Length        | FLT3      | Cytoplasmic Domain     | RET      | Cytoplasmic Domain |
| CSK   | Full Length        | FLT4      | Cytoplasmic Domain     | RON      | Cytoplasmic Domain |
| CTK   | Full Length        | FMS(CSFR) | Cytoplasmic Domain     | ROS      | Cytoplasmic Domain |
| DDR2  | Cytoplasmic Domain | FRK       | Kinase Domain          | SRC      | Full Length        |
| EGFR  | Cytoplasmic Domain | FYN       | Full Length            | SRM      | Kinase Domain      |
| EphA1 | Cytoplasmic Domain | HCK       | SH3-SH2-Protein Kinase | SYK      | Full Length        |
| EphA2 | Cytoplasmic Domain | HER2      | Cytoplasmic Domain     | TEC      | Kinase Domain      |
| EphA3 | Cytoplasmic Domain | HER4      | Cytoplasmic Domain     | TIE2     | Cytoplasmic Domain |
| EphA4 | Cytoplasmic Domain | IGF1R     | Cytoplasmic Domain     | TNK1     | Kinase Domain      |
| EphA5 | Kinase Domain      | INSR      | Kinase Domain          | TRKA     | Cytoplasmic Domain |
| EphA6 | Cytoplasmic Domain | IRR       | Cytoplasmic Domain     | TRKB     | Cytoplasmic Domain |
| EphA7 | Cvtoplasmic Domain | ITK       | Full Lenath            | TRKC     | Cvtoplasmic Domain |
| EphA8 | Kinase Domain      | JAK1      | Kinase Domain          | ТХК      | Kinase Domain      |
| EphB1 | Cvtoplasmic Domain | JAK2      | Kinase Domain          | TYK2     | Kinase Domain      |
| EphB2 | Cytoplasmic Domain | JAK3      | Kinase Domain          | TYRO3    | Cytoplasmic Domain |
| EphB3 | Cvtoplasmic Domain | KDR       | Cvtoplasmic Domain     | YES      | Full Lenath        |
| EphB4 | Cvtoplasmic Domain | KIT       | Cvtoplasmic Domain     | ZAP70    | Full Lenath        |
| FAK   | Full Length        | LCK       | Full Length            |          | -                  |

| pIC <sub>50</sub> | Gleevec       | Iressa        |  |
|-------------------|---------------|---------------|--|
| More than 8       | PDGFRα        | EGFR          |  |
| Between 8 to 7    | KIT<br>PDGFRβ | EphA6         |  |
|                   | ABL           | HER2          |  |
| Between 7 to 6    | ARG           | HER4          |  |
|                   | DDR2          | EphA4         |  |
|                   | FMS           | EphA5         |  |
|                   | BLK           | EphB4         |  |
|                   | LCK           | $PDGFR\alpha$ |  |
|                   | LYNa          | PDGFRß        |  |

## **STAUROSPORINE**

#### Figure 2. Alignment of phosphotransfer inactive tyrosine kinases.

| SRC<br>DDR1<br>ROR1<br>ROR2<br>CCK4<br>EphA10<br>EphB6<br>HER3<br>RYK<br>SuRTK106<br>Consensus | L R L E V K L G Q G C<br>L R F K E K L G E G Q<br>V R F ME E L G E C A<br>V R F ME E L G E D R<br>L Q P I T T L G K S E<br>V T L E R S L G G G R<br>I K I E E V I G T G S<br>L R K L K V L G S G V<br>I T L K D V L Q E G T<br>S E V L E Q I C S G S | F G E V V A I K T L   F G E V V A V K I L   F G K I V A I K T L   F G K V V A I K T L   F G K V V A I K T L   F G K V V A I K T L   F G E V V L V K S L   F G E L V A V . HM   F G E V V A I Q A L   F G T V V C I K V I   F G R I A F V K T V   C G P I V I L K A L   O G - V O A O K - O | E A Q V M<br>E V K I M<br>E A S L M<br>E A M L R<br>E L E M F<br>E A L T L<br>. A A V L<br>H M L A I<br>E S C K L<br>. I Q F H               | Y V H R D L R A A N I L V<br>F V H R D L A T R N C L V<br>F V H K D L A A R N I L I<br>V V H K D L A A R N V L V<br>F V H K D L A A R N C L V<br>Y V H R G L A A R H V L V<br>F V H R S L S A H S V L V<br>M V H R N L A A R N V L L<br>V I H K D L A A R N C V I<br>L F H G D V A A R N I L M<br>o o h r D o k + - No o o |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consonicus                                                                                     | subdomain                                                                                                                                                                                                                                            | 1 subdomain 2                                                                                                                                                                                                                                                                              | subdomain 3                                                                                                                                  | subdomain 6                                                                                                                                                                                                                                                                                                                |
| SRC<br>DDR1<br>ROR1<br>ROR2<br>CCK4<br>EphA10<br>EphB6<br>HER3<br>RYK<br>SuRTK106              | C KV A D F G L A<br>I K I A D F G MS<br>VKI S D L G L S<br>VKI S D L G L F<br>VKV S A L G L S<br>C K I S G F G R G<br>C KV A R L G H S<br>V Q V A D F G V A<br>VKI T D N A L S<br>A K L C G L G L A                                                  | GAK F WT A P E AA<br>L P I R WMA WE C I<br>I R WMP P E A I<br>L P I R WMA P E A I<br>V P L R WMS P E A I<br>G R S P WA A P E T L<br>C L L R WA A P E V I<br>T P I K WMA L E S I<br>R WMA L E S L<br>I P L K WL A P E R L                                                                   | D V WS F G I<br>D V WA F G V<br>D I WS F G V<br>D I WS Y G V<br>D V WA F G V<br>D V WS F G I<br>D V WS F G I<br>D V WS F G V<br>D V WA F G V | L L T<br>T L W<br>V L W<br>V L W<br>L MW<br>I MW<br>I MW<br>C Consensus]<br>T V W [consensus]<br>C Hydrophobic<br>L L Y +: Hydrophobic and less bulky                                                                                                                                                                      |
| consensus                                                                                      | ok o + D f g o +<br>subdomain 7                                                                                                                                                                                                                      | g + o - + p E o o<br>subdomain 8                                                                                                                                                                                                                                                           | Doo+ogo<br>subdoma                                                                                                                           | in 9 overcase: Moderately conserved uppercase: Highly conserved                                                                                                                                                                                                                                                            |

Potential inactive kinases are aligned with Src, a typical active tyrosine kinase, showed in the top of the alignment (Fig. 2). Only important motifs for phosphotransfer reaction are shown in this figure and residues with important functions are colored green<sup>*v*</sup>. Residues supposed to be responsible to lose/weaken their activities are colored red.

In case of DDR1, although no in vitro phosphotransfer reaction has been observed, autophosphorylation of the kinase has been suggested from overexpression experiments in 293 cells after the stimulating with collagen<sup>2</sup>. This implies the unique mechanism to activate the protein. On the other hand, recent report of ROR2 is clearly demonstrating tyrosine kinase activity, *in vitro*<sup>3)</sup> with unique activation mechanism. Learning unique properties of these two kinases, investigations are now on going at Carna Biosciences.

Others in the alignment are considered inactive. For ROR1, ROR2 and CCK4, conserved Gly in subdomain 1 is replaced by Cvs, Asp and Ser respectively. This mutation might weaken affinity of kinases for ATP, depending on the type of replaced residue. For EphA10 and EphB6, highly conserved Lys at subdomain 2 is missed or replaced to Gln. The Lys is recognized as essential for maximal enzyme activity by anchoring and orienting ATP with interacting its  $\alpha$ - and  $\beta$ - phosphates. EphB6 and SuRTK106 are missing Glu at subdomain 3. The Glu appears to help stabilizing the interaction between Lys (subdomain 2) and  $\alpha$ - and  $\beta$ -phosphate of ATP. EphA10, EphB6 and HER3 have mutation on invariant Asp in subdomain 6. The Asp is believed to have a role as proton acceptor within phosphotransfer reaction. EphA10 and EphB6 also have mutation at the invariant Asn in subdomain 6 which is known to chelate secondary  $Mg^{2+}$  ion. CCK4, EphA10, EphB6 and SuRTK106 replace Asp in subdomain 7 to Ala, Gly, Arg and Gly respectively. The Asp chelates the primary activating  $Mg^{2+}$  ion to help  $\gamma$  phosphate transfer. For RYK, a replacement of Phe-Gly in subdomain 7 to Asn-Ala shall weaken phosphotransfer activity by losing hydrogen bonding between Asp and Ala.

#### References

1) Hanks SK, Hunter T., FASEB J. 1995 May:9(8):576-96, "Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. 2) Vogel W. Gish GD, et al., Mol Cell, 1997 Dec:1(1):13-23, "The discoidin domain receptor tyrosine kinases are activated by collagen 3) Kani S, Oishi I, Yamamoto H, et al., J Biol Chem, 2004 Nov 26:279(48):50102-9, Epub 2004 Sep 15. "The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Is."

## Conclusion

- (1) Carna Biosciences has successfully collected 77 active human tyrosine kinases and developed their inhibitor screening systems (QuickScout™ TK Comprehensive Panel).
- (2) Although Gleevec and Iressa strongly inhibit their well known targets, their novel targets ("off-targets") found by QuickScout™ TK Comprehensive Panel.
- (3) For the rest of our under developed tyrosine kinases, 9 out of 13 has no activities in *in vitro* experiment (Three of LMR family members are found as serine/threonine kinase (data not shown)). Investigation of in vitro activity for DDR1 and ROR2 is now on going. Weak phosphotransfer activity has been observed for TIE1 and suitable conditions for inhibitor screening are under study. (Fig. 2)
- (4) Our QuickScout<sup>TM</sup> TK Comprehensive Panel is useful to develop more advanced medicines



The presenters wish to acknowledge K. Akita, T. Asami, H. Fukada, M. Gouda, N. Harada, M. Hatakeyama, E. Ishibushi, N. Iwata, M. Kaku, Y. Kawase, T. Myojin, R. Nakai, M. Nakamura, Y. Narumi, Y. Nishioka, C. Nukuzuma, K. Okita, and T. Tateishi for their contributi