Kinetic Monitoring of Compound Dissociation from Wild-type and Mutant Kinase in Living Cells with NanoBRET[™]

Takeomi Inoue¹, Aki Emi¹, Deborah J. Moshinsky², James D. Vasta³, Yugo Narumi¹, Yuko Uno¹, Ryoko Nakai¹, Masaaki Sawa¹, Matthew B. Robers³, Yusuke Kawase¹

¹ Carna Biosciences, Inc., BMA, 1-5-5, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan ² CarnaBio USA, Inc., 209 West Central Street, Suite 307, Natick, MA 01760, USA ³ Promega Corporation, 2800 Woods Hollow Road, Fitchburg, WI 53711, USA

Abstract: It has been recognized that drug-target residence time, in addition to affinity, is a critical parameter influencing drug efficacy. In this study, we illustrate the utility of the NanoBRET[™] Target Engagement Assay for interrogating the kinetics of compound binding in living cells. In a case study of FGFR2, it was revealed that drug-target residence time of a single compound varied markedly between wild-type and mutant kinases, and among mutant kinases. These results stress the importance of evaluating the residence time of drugs against a broad range of kinases including mutants to gain insight into the kinetic selectivity of compounds.

Background:

- Drug-target residence time has been traditionally investigated using isolated kinase, but not under physiological condition such as the intracellular environment.
- Although the compound affinity to mutant kinases has been addressed frequently, compound residence time for mutants is rarely reported.
- Evaluating the residence time of kinase inhibitors at mutant as well as wild-type kinases in living cells is highly desired.

Figure 3. Drug-target residence time can be measured with reversible and irreversible inhibitors.

ARNA BIOSCIENCES

Promega

NanoBRET[™] in Kinetic Mode

The NanoBRET[™] TE Intracellular Kinase Assay utilizes BRET in living cells by molecular proximity of the NanoBRET[™] Tracer to the NanoLuc[®] luciferase-fused kinase. After equilibrating with a near-saturating concentration of compound, the cells are washed to remove unbound compound and treated with a near-saturating concentration of a cell-permeable tracer. BRET is measured repeatedly in a luminometer to observe tracer association as a proxy for compound dissociation.

Result:

Figure 1. The NanoBRET[™] assay reveals improved selectivity of crizotinib in living cells compared to biochemical assay.

1 μ M Crizotinib, QuickScout[™] Enzyme Assay

µ M Crizotinib, Live Cell NanoBRET™ TE

Compound	IC ₅₀ (nM)	Test concentration (nM)	Residence Time (min)
Dasatinib	20.0	100	68
Fenebrutinib	6.42	30	459
CGI-1746	66.6	1000	15
RN-486	6.46	30	179
Vecabrutinib	28.1	300	26
ARQ-531	33.4	300	134
Acalabrutinib	33.5	100	> 1,000
Ibrutinib	0.84	3	> 1,000
Zanubrutinib	1.93	10	> 1,000

Intracellular residence time analysis of reversible and irreversible BTK inhibitors. HEK293 cells expressing BTK were preincubated with test compounds or vehicle(DMSO) for 2 hours followed by a brief washout. The NanoBRET[™] Tracer K-4 was then added and BRET was repeatedly measured with the Glomax[®] Discover Multimode Microplate Reader (Promega).

Figure 4. Residence time of ponatinib at FGFR2 remarkably varies between wild-type and mutants, and among the mutants.

A comparison of occupancy vs inhibition of 1 μ M crizotinib in NanoBRETTM versus cell-free (QuickScoutTM, Carna Biosciences). In live cells, crizotinib is more selective for MET and ALK.

Figure 2. PIKFYVE inhibition induces vacuolation phenotype with a better correlation with the results in the cellular NanoBRET[™] TE assay.

Apilimod	1.2	1.1	++	
YM201636	3.8	56	+	

(A) Biochemical enzyme (ADP-Glo[®]) and NanoBRET[™] assay of PIKFYVE, a target now implicated in COVID-19 infectivity and viral entry. (B) PIKFYVE inhibition promoted cytoplasmic vacuolation. MDA-MB-231 cells were treated for 48 hours with DMSO (top) or 0.3 μ M apilimod (bottom). (C) Vacuolation phenotype correlated well with the IC₅₀ in the NanoBRET[™] assay. Vacuolation phenotype was scored by inhibitor concentration at which almost all of cells in a field of view showed vacuolation when cells were treated for 48 hours with increasing dose of inhibitors (++: $\geq 0.3 \ \mu M$, +: $\geq 3 \ \mu M$).

wild-type 28.5 100 52	
K659M 35.3 300 155	
L617V 122 1000 32	
N549H 7.26 30 144	
N549K 7.09 30 >1000	
V564F 156 1000 20	

(A) Cellular target engagement profile of ponatinib against wild-type and various mutant FGFR2s interrogated using the tracer K-10. Data are normalized to the BRET ratio of the vehicle-treated sample. (B) Residence time analysis reveals remarkably slow dissociation of ponatinib from FGFR2 [N549K], compared to wild-type and other mutant FGFR2s. Data are normalized to the plateau value of the BRET recovery profile for the vehicle-treated sample in each assay.

Conclusions: Carna Biosciences is offering target engagement intracellular kinase assay services using NanoBRET[™] in collaboration with Promega. We can provide data of residence time as well as affinity of compounds against kinome-wide targets (> 200).

1. NanoBRET[™] TE assays enable the quantitative determination of compound residence time in living cells. 2. Evaluation of drug-target residence time at both wild-type and mutant kinases is desirable to illustrate kinetic selectivity of test compounds, offering advantages in drug discovery programs.

Carna Biosciences, Inc. info@carnabio.com / www.carnabio.com

