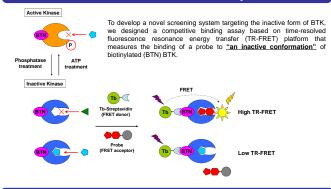
Abstract # C94

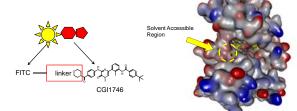
A novel binding assay to identify inhibitors that bind to inactive forms of Bruton's tyrosine kinase based on fluorescence resonance energy transfer


Tokiko Asami, Wataru Kawahata and Masaaki Sawa

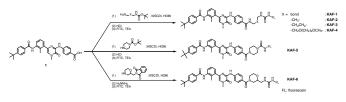
Drug Discovery Research, Carna Biosciences, Inc., BMA 3F 1-5-5 Minatojima-Minami, Chuo-ku, Kobe 650-0047 Japan

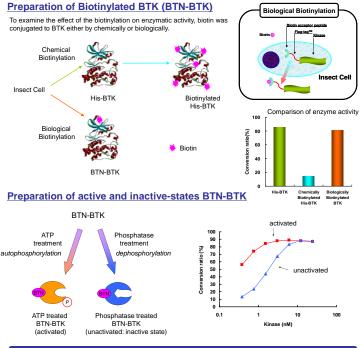
INTRODUCTION

Bruton's Tyrosine Kinase (BTK) is a member of the Tec family of non-receptor tyrosine kinases. BTK is one of the crucial kinases for the B cell maturation and also involved in mast cell activation through the high-affinity IgE receptor. Therefore, BTK is an attractive target for the potential treatment of multiple therapeutic areas that involve B-cell and/or mast cell activation, such as B cell malignances, asthma, and theumatoid arthritis. In order to develop a selective BTK inhibitor, it is important to identify a highly selective compound as the drug discovery starting point. Generally, activity-based high-throughput screening (HTS) using active kinase has been used to identify hit compounds by measuring the inhibition of substrate phosphorylation. However, the activity-based HTS campaign frequently results in the enrichment of classical ATP competitive inhibitors, which would often require considerable medicinal chemistry efforts to increase kinase selectivity, because the human protein kinase family consists of over 500 enzymes with very similar active sites. On the other hand, it is believed that inactive kinase structures are more diverse than the active forms. Therefore targeting the inabitors of an inactive form of BTK.


Concept of competitive binding assay targeting an inactive state of BTK based on TR-FRET system

MATERIALS & METHODS


Probe design based on CGI1746

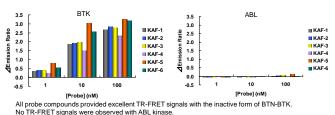

CG11746 was chosen as a probe of the active site of the inactive conformation of BTK, as CG11746 is reported to bind to the inactive form of BTK with 32-fold greater affinity than the activated form (Kd=2.9 nM, and 94.1 nM, respectively. Nat. Chem. Biol. 7, 41-50. 2011).

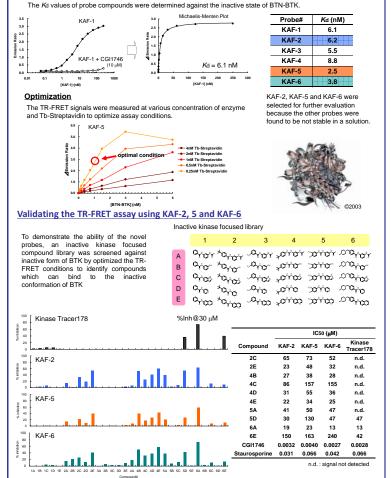
Synthesis of FITC labeled CGI1746

CGI1746 was labeled with FITC via various linker groups to find the optimum length of the linker for FRET.

RESULTS

Inhibitory profiles of probe compounds for BTK


	IC50 (nM)		
Probe	ATP treated BTK (activated)	Phosphatase treated BTK (unactivated)	
KAF-1	290	5.6	
KAF-2	208	3.2	
KAF-3	189	4.3	
KAF-4	305	7.8	
KAF-5	69	0.61	IC50 values determined by measuring the
KAF-6	350	4.8	inhibition of the substrate phosphorylation with Caliper mobility shift assay


Titration study of probes with inactive form of BTK

Assay condition :

5 nM kinase, 2 nM Tb-Streptavidin, 1-100 nM probe, 1% DMSO or 10 μ M CGI1746, 1 hour incubation probe emission (Ex. 320 nm / Em. 520 nm), donor emission (Ex. 320 nm / Em. 495 nm)

KAF-2, 5 and 6 identified 10 hit compounds having potential to bind to the inactive form of BTK. On the other hand, a commercially available probe Kinase Tracer178 (LanthaScreen® TR-FRET, Invitrogen) detected only 3 hits.

SUMMARY

Assay development

Determination of Kd value

- We have designed and synthesized novel compounds to probe the inactive conformation of BTK.
- All probe synthesized here retain its affinity to the inactive form of BTK.
- Validation screening study demonstrated that the novel probes could identify several hit compounds which
 might preferentially bind to the inactive conformation of BTK.
- The methods using novel probes KAF-2, 5 and 6 have great potentials for the discovery of novel lead compounds against inactive states of BTK.

ACKNOWLEDGEMENT

Carna Biosciences Research and Development team and Production and Manufacturing Technology team