

Carna Biosciences, Inc.

February 10, 2022

Stock Code: 4572

Company Overview

Company Overview

- □ Founded in April 2003 (spin-out company from N.V. Organon [MSD])
- □ Initial Public Offering (JASDAQ 4572) in March 2008
- 82 people
- **Offices:**
 - Carna Biosciences, Inc. Kobe, Japan;
 - CarnaBio USA, Inc. Natick, MA
 - Clinical Development Office South San Francisco, CA

Carna Biosciences, Inc. (Kobe, Japan)

CarnaBio USA (Natick, MA)

Clinical Development Office (SSF, CA)

Discover and develop significant medical values that will provide therapeutic solutions for improving human health

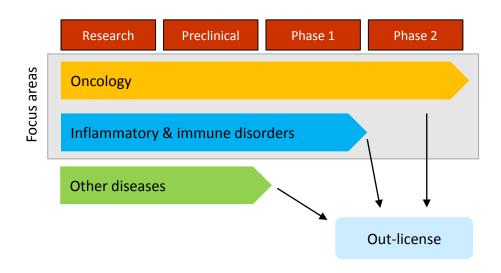
Carna's powerful drug discovery engine invents a drug from scratch and drives our pipeline expansion



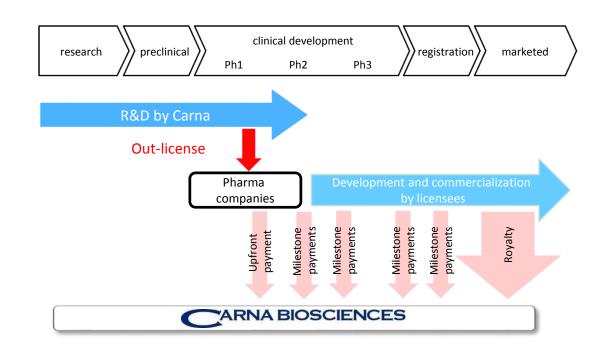
Continuously deliver innovative therapies for patients to treat serious unmet medical needs

Business Model to Drive Growth

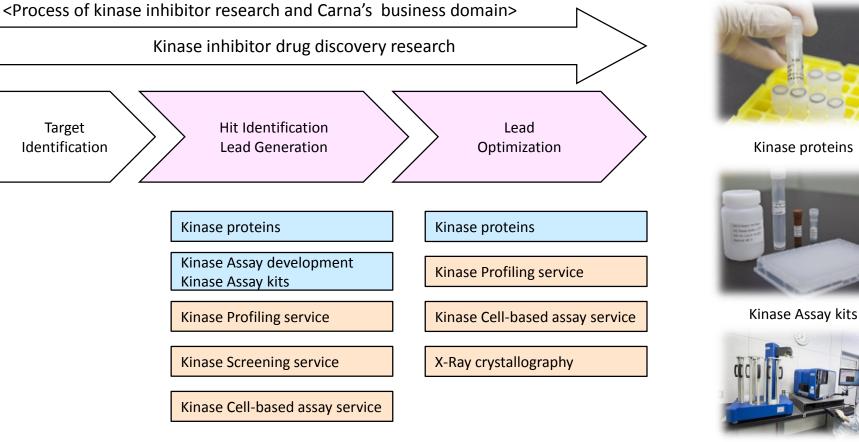
- Drug Discovery Support (ddSP) business provides pharmaceutical companies with the new tools to drive their kinase research. The stable income from the support business helps the drug discovery business to invest in R&D.
- Our small but powerful team with talented professionals at the Drug Discovery Research & Development (ddRD) business are focused on the research and development of innovative therapies targeting oncology and autoimmune diseases.



ARNA BIOSCIENCES


<R&D focus areas>

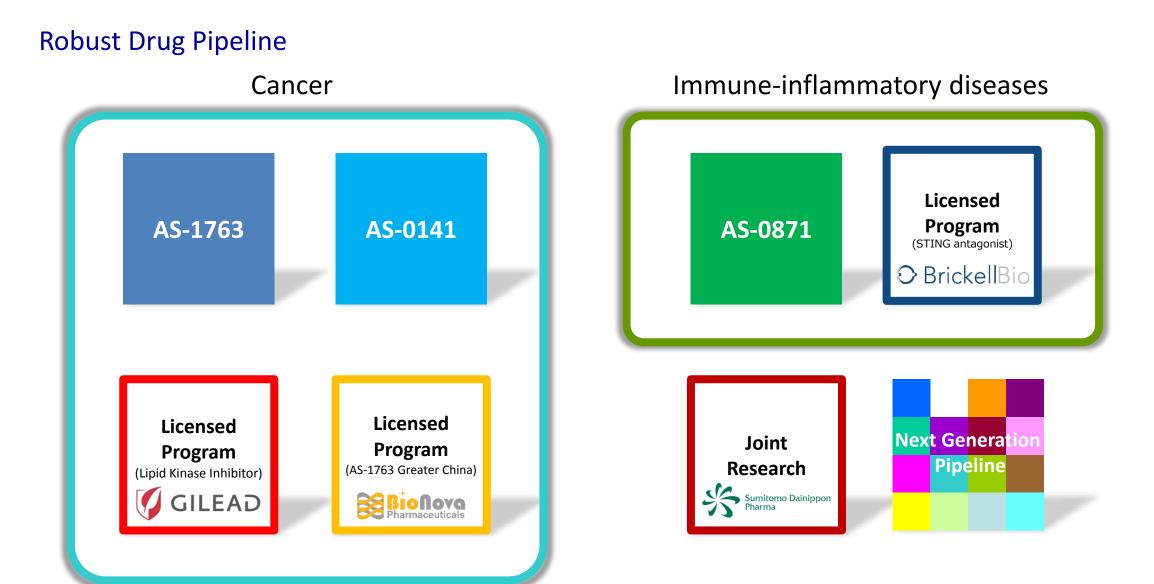
- ddRD business conducts research and development of innovative small molecule drugs including kinase inhibitors, focusing on oncology and inflammatory and immune disorders.
- We develop our oncology drug pipelines up to Phase 2 to maximize the potential values.
- For non-oncology pipelines, we basically license out at early stage before entering Phase 2 study to mitigate the development risk.


<Earnings model>

- We license our drug pipelines to pharma companies to generate revenue through upfront payments, milestone payments, and royalties on the resulting product sales.
- We intend to build long-term value by developing our own drug pipelines up to Phase 2 clinical trial on a fully burdened cost or in collaborations with development partners.

Business Model of Drug Discovery Support (ddSP) Business

 ddSP business develops and offers research tools for drug discovery, leveraging our proprietary kinase research technology, to generate stable cash flow. We apply the cash flows from ddSP business to ddRD business for the development of our own drug pipelines and the continued discovery of promising drug candidates in the future.



Kinase Profiling and screening service

Drug Discovery R&D (ddRD) Business

<Oncology>

Compound	Target	Indication	Discovery/Preclinical	Clinical	Partner
AS-0141	CDC7/ASK	Cancer			
Small Molecule	Kinase	Immuno-Oncology	Out-license	ed to Gilead	🌠 GILEAD
AS-1763	ВТК	Blood Cancer			* Pharmaceuticals
Small Molecule	ALK5	Immuno-Oncology			
Small Molecule	CDK1	Cancer			

*Greater China only

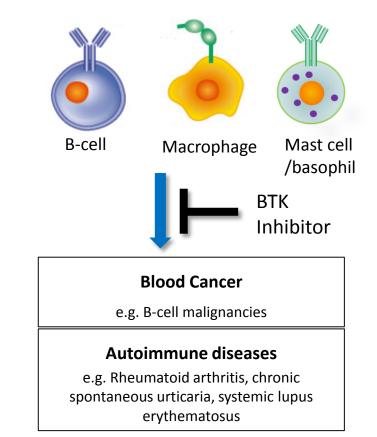
<Other Therapeutic Areas>

Compound	Target	Indication	Discovery/Preclinical	Clinical	Partner
Small Molecule	Kinase	Psychiatry & neurology	Joint rese Sumitomo Dair	arch with nippon Pharma	Sumitomo Dainippon Pharma
AS-0871	ВТК	Immune-inflammatory diseases			
Small Molecule	N/A	Malaria			
Small Molecule	STING	Immune-inflammatory diseases	Out-license	d to Gilead	O BrickellBio

✓ As of Feb. 2022.

✓ We are actively pursuing early discovery programs to create next wave of pipeline.

BTK Inhibitor Program

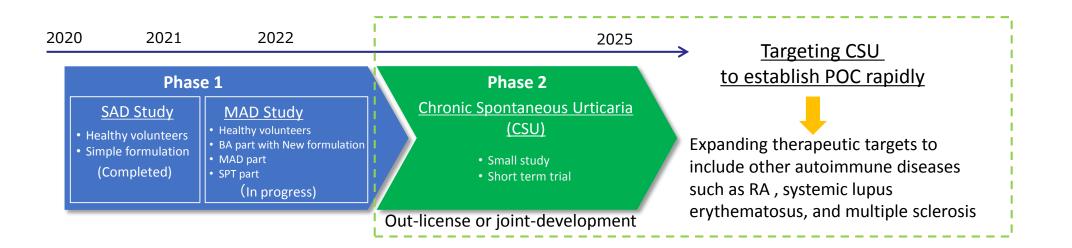

Bruton's Tyrosine Kinase (BTK)

- ✓ BTK is one of the crucial kinases for the B-cell maturation and macrophage activation
- ✓ BTK has been recognized as a validated therapeutic target since the success of Ibrutinib, the first FDA approved BTK inhibitor
- ✓ The expected peak sales of Ibrutinib is > \$10 billion*

<Sales of BTK inhibitors in market>

Launch	Product	Company	Target	2020	2026 Est.
2013	Ibrutinib	AbbVie/J&J	Blood cancer	\$8.4B	\$10.7B*1
2017	Acalabrutinib	Astra Zeneca	Blood cancer	\$522M*2	

- In January 2019, Loxo Oncology, developing kinase inhibitors including non-covalent BTK inhibitor LOXO-305, was acquired by Eli Lilly for \$8.0 billion.
- In December 2019, ArQule, developing non-covalent BTK inhibitor ARQ 531, was acquired by Merck for \$2.7 billion.



High potential of non-covalent BTK inhibitors for sizable license deals

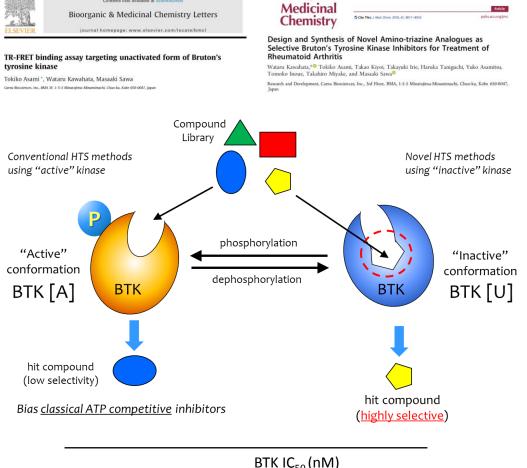
AS-0871: Targeting Immune-inflammatory diseases		
 Small molecule BTK inhibitor Non-covalent/reversible High kinase selectivity Orally available 	 Demonstrated significant efficacies in arthritis models Showed efficacy in systemic lupus erythematosus model Find a partner to conduct further development after completing Phase 1 study 	


AS-0871 : Phase 1 Clinical Trial in Progress

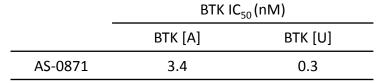
Phase 1 in the Netherlands completed SAD study (Healthy volunteers)

- ✓ Safe and well-tolerated at all dose levels
- ✓ Favorable Pharmacokinetic Profile
- Promising Pharmacodynamic effects
- Conducted using simple formulation

Developing several new formulations

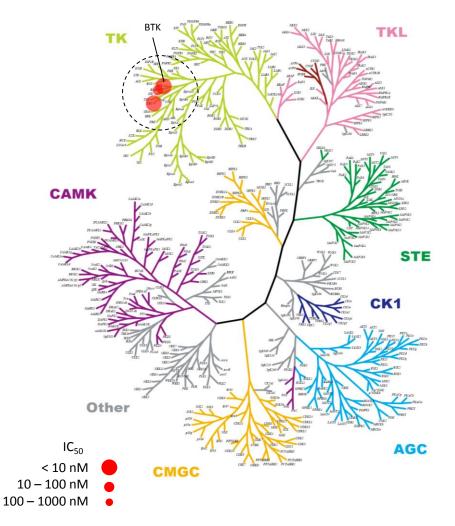


AS-0871: Excellent Kinase Selectivity



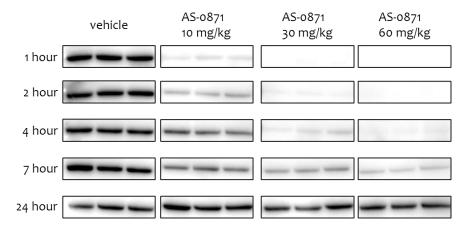
Targeting Inactive Conformation of BTK

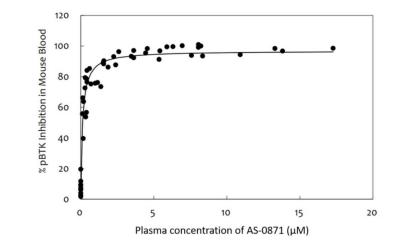
Contents lists available at ScienceD



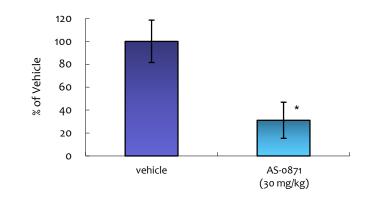
Journal of

Kinase Selectivity Profiling

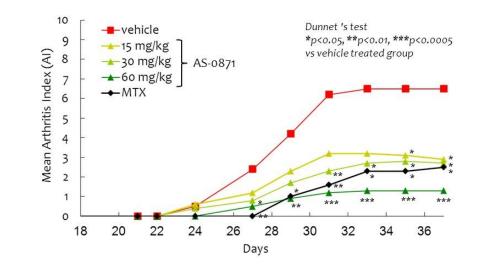

Only inhibited <u>2 other kinases in a total of 312 kinases</u> tested at 0.3 μ M concentration.



AS-0871: In Vivo Therapeutic Efficacy

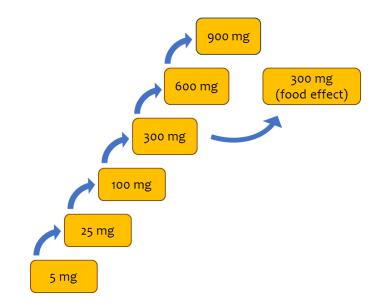

PK/PD Study

Auto-phosphorylation status of BTK was measured following oral single administration of AS-0871



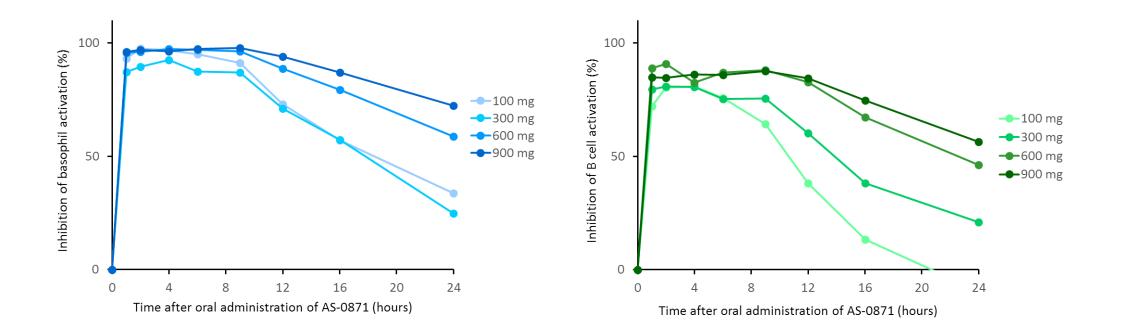
Passive cutaneous anaphylaxis (PCA) mouse model (n=5)

Collagen-induced arthritis (CIA) mouse model (n=10)



ARNA BIOSCIENCES

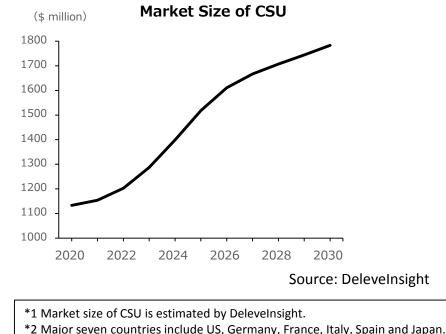
SAD Part (Completed)


Step 1 Single Ascending Dose Study (SAD)	Step 2
 6 dose levels (8 subjects/cohort) Placebo controlled (6 active / 2 placebo) Safety and tolerability Pharmacokinetics and pharmacodynamics 	Food effect

- ✓ AS-0871 is well-tolerated without any safety concerns.
- ✓ Favorable pharmacokinetic profile.
- ✓ Blood samples to assess PD effects were analyzed for evaluation of the B-cell and basophil responses. Administration of AS-0871 at 100mg or above resulted in strong inhibition of B-cell and basophil activation.
- ✓ Switching to a new formulation in the MAD study.

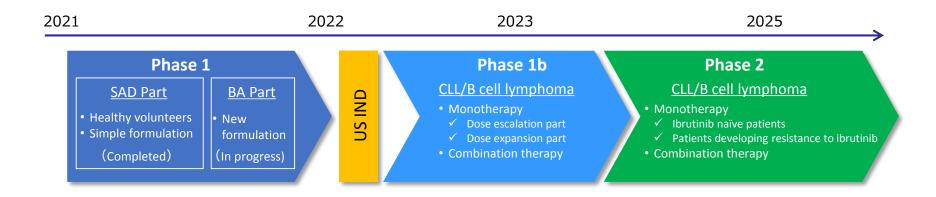
Pharmacodynamics of AS-0871

- Pharmacodynamic study demonstrated that subjects who received AS-0871 showed dose proportional inhibitions in basophil and B-cell activations, and significant and sustained inhibitory effects were observed at 100 mg and above.
- Oral administration of AS-0871 achieved therapeutic plasma levels needed to inhibit B cells and basophils activation, suggesting that AS-0871 has a potential to become a new treatment option for inflammatory diseases.

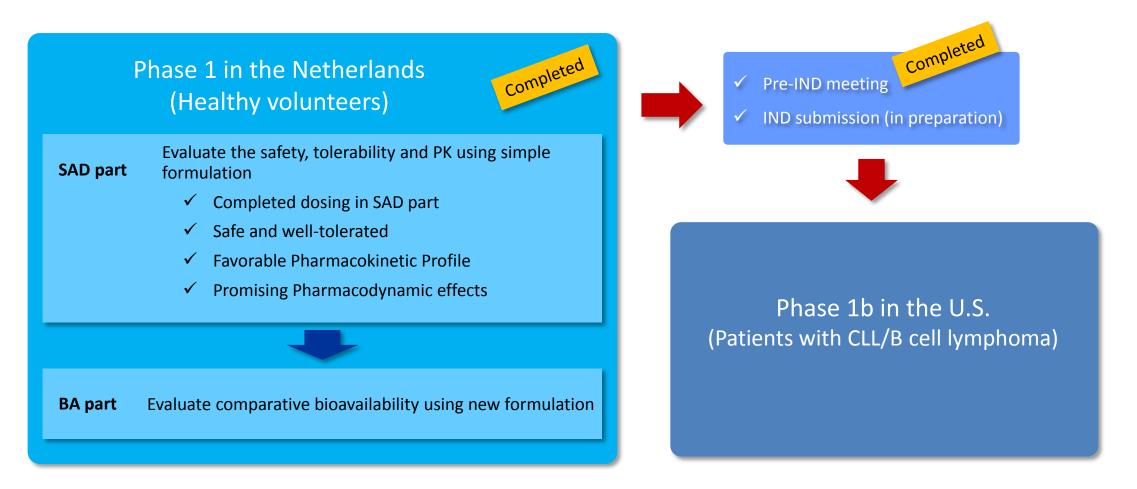

ARNA BIOSCIENCES

- Fenebrutinib is the only non-covalent BTK inhibitor under development targeting autoimmune diseases.
- No non-covalent BTK inhibitors under development targeting Chronic Spontaneous Urticaria.

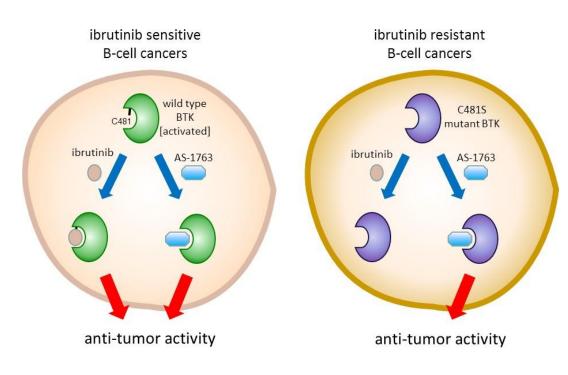
Compound	Company	Development Phase
Fenebrutinib (GDC-0853)	Roche / Genentech	P3 Multiple Sclerosis

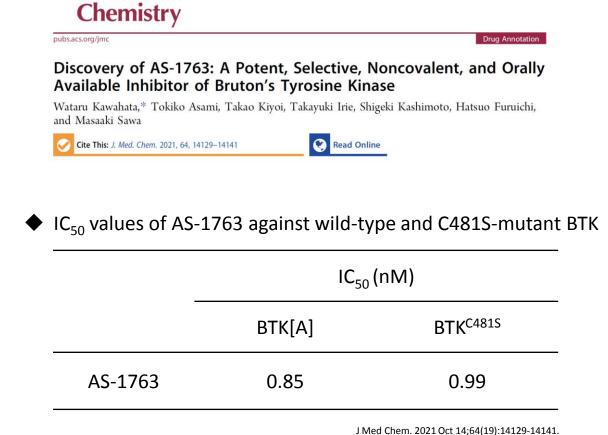

- Chronic Spontaneous Urticaria (CSU) is one of most frequent skin diseases with unmet medical needs since curative treatment is not available.
- CSU is a distressing skin disorder that characterized by itching and hives lasting for more than 6 weeks, which has major detrimental effects on quality of life with sleep deprivation and other conditions.
- ✓ An underlying cause is rarely detected and symptoms can be exacerbated by infectious diseases or stress.
- ✓ The lack of efficacy of approved standard therapy (antihistamines) in many patients is another major problems.
- Omalizumab, humanized anti-IgE anti IgE antibodies, has been approved as the third-line therapy, but the drug is very expensive (\$1874 per 4 weeks on average).
- ✓ The market size of CSU in 2020 was estimated as \$1,133 million in major seven countries. The market size excluding antihistamines was \$1,062 million.
- ✓ The market size of CSU is expected to become \$1,783 million in 2030 with launch of several humanized anti-IgE anti IgE antibodies competing with omalizumab.
- ✓ There are no approved BTK inhibitors targeting CSU.

RNA BIOSCIE

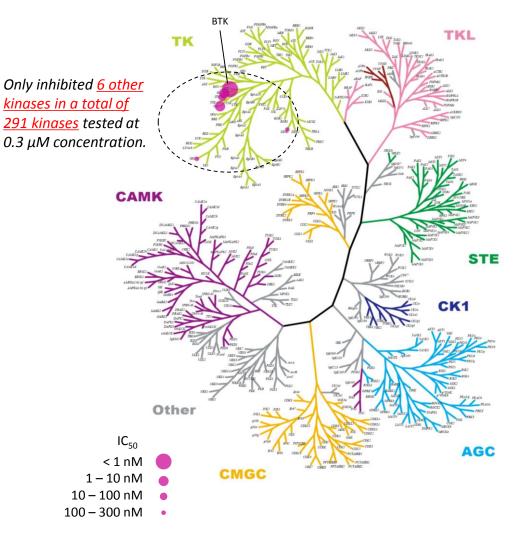

AS-1763: Targeting <u>Blood Cancer</u>		
 Small molecule BTK inhibitor Non-covalent/reversible High kinase selectivity Inhibits both BTK wild type and ibrutinib resistant BTK C481S mutants Orally available 	 Displayed strong anti-tumor effects in lymphoma model with both wild type and C481S mutant BTK Displayed efficacy in immuno-oncology model Potential applications for autoimmune diseases Plan to accelerate the clinical studies utilizing the clinical data of BioNova, the licensee in Greater China 	

BA: Bioavailability


AS-1763 : Phase 1 Clinical Trial in Progress



- Plan to present the Phase 1 data at AACR2022.
- ◆ Aim to conduct clinical studies efficiently, collaborating with BioNova.

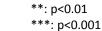

Journal of

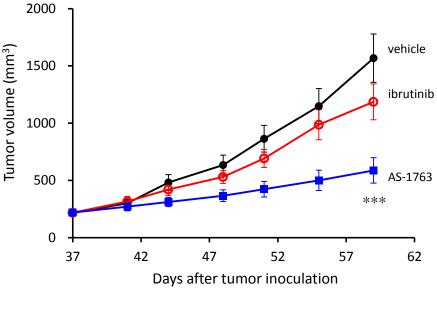
Medicinal

In vitro pharmacological activities of AS-1763

	IC ₅₀	(nM)	-
	AS-1763	ibrutinib	_
Autophosphorylation BTK (Ramos)	1.4	1.1	
CD69 activation (Human whole blood)	11	8.1	
Cancer cell growth OCI-Ly10 cells	1.8	0.75	
Cancer cell growth OCI-Ly10 [BTK C481S] cells	20	1030	50-fold Stronger activity
Normal cell growth HEL299 cells	6370	6870	_


Ramos: human Burkitt lymphoma cell line OCI-Ly10: human B-cell non-Hodgkin lymphoma cell line OCI-Ly10 [BTK C481S]: BTK[C481S] knock-in OCI-Ly10 cells HEL299: human embryo lung cell line • Kinase selectivity profiling




J Med Chem. 2021 Oct 14;64(19):14129-14141.

AS-1763: In Vivo Antitumor Effect against BTK^{C481S} Mutant

 In vivo antitumor effects of AS-1763 on human B-cell non-Hodgkin lymphoma cell line, OCI-LY10 tumor xenograft mouse model (n=8-10) In vivo antitumor effects of AS-1763 on ibrutinib-resistant
 BTK^{C481S} knock-in OCI-LY10 tumor xenograft mouse model (n=11)

Ibrutinib: 25 mg/kg QD AS-1763: 60 mg/kg BID

ARNA BIOSCIENCES

• First generation covalent BTK inhibitors

- ✓ First generation covalent BTK inhibitors including ibrutinib are key therapeutic options for patients with B cell malignancies including chronic lymphocytic leukemia (CLL).
- ✓ Sales of the first generation BTK inhibitors, ibrutinib, acalabrutinib, and zanubrutinib, totaled over \$9 billion in 2020. Sales of ibrutinib is expected to be over \$10 billion according to an estimate by Evaluate Pharma.
- However, patients are reported to develop resistance during the treatment as more first generation BTK inhibitors are prescribed.

(\$million)	Development/ Marketing	2019	2020	2026Est.
Ibrutinib	AbbVie + J&J	7,291	8,433	10,722
Acalabrutinib	AstraZeneca	164	522	n.a.
Zanubrutinib	BeiGene	1	41	n.a.

<Sales of first generation BTK inhibitors>

Source: Financial report of the companies for historical data. Estimate for 2026 is based on EvaluatePharma.

- ✓ Patients treated with ibrutinib are reported to develop resistance during the treatment due to substitution of cysteine residue at 481 position with serine (C481S mutation) in BTK, which prevents the covalent binding of the first generation irreversible BTK inhibitors.
- ✓ AS-1763 significantly abrogates cell proliferation in both wild type and C481S mutant BTK lymphoma cells, strongly suggesting that AS-1763 will be a new therapeutic option for treating patients with B cell malignancies both having wild type and C481S mutation in BTK.
- ✓ Inhibitors for BTK C481S-mediated resistance have not been launched, therefore there is a high unmet medical need for new therapeutic options.
- Two non-covalent BTK inhibitors to treat patients with BTK C481S mutation are currently under development. ArQule and Loxo that originally developed the programs were acquired by big pharma.

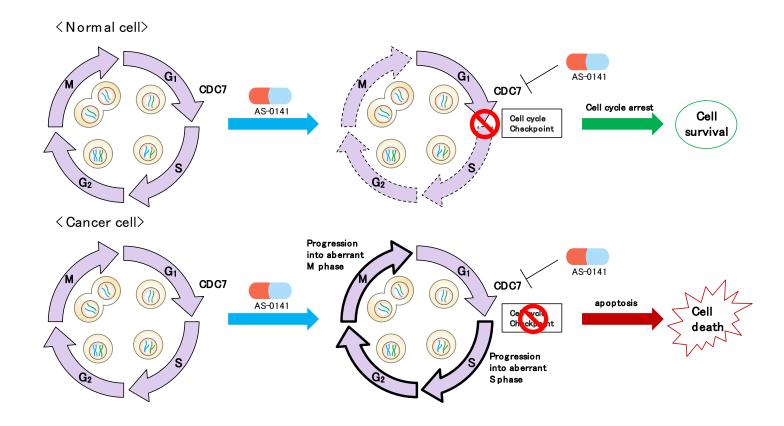
Compound	Company	Development Phase
ARQ531	Merck (ArQule)	P2
LOXO-305	Loxo / Lilly	Р3

ARNA BIOSCIEN

	AS-0141 : Targeting <u>Cancer</u>
Small molecule CDC7 inhibitorHigh kinase selectivity	 Potent anti-proliferative activity against various cancer cell lines Demonstrated strong anti-tumor activity in several human tumor xenograft
 Potential First-in-class drug Orally available 	 models Conducting Phase 1 study in Japan targeting solid tumors

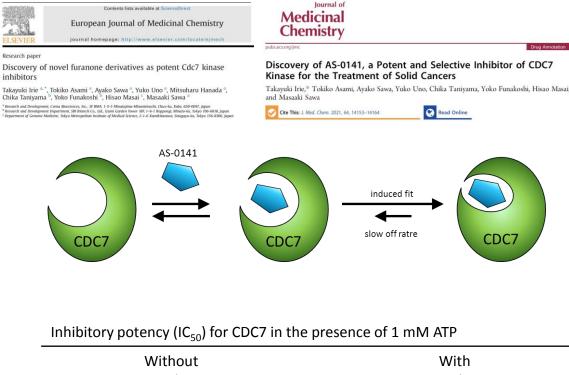
Phase 1 Study in patients

- The Phase 1 study in patients with unresectable, advanced, recurrent, or metastatic solid tumors was initiated in Japan in H1 2021.
- ✓ The study consists of two parts, a dose escalation and an expansion.
- The primary objective is to assess safety, tolerability, maximum tolerated dose, preliminary anti-tumor activity, and pharmacokinetics(PK)/pharmacodynamics(PD) as well as to determine recommended Phase 2 dose.
- ✓ The dose escalation part is ongoing.
- ✓ No dose-limiting toxicity (DLT) has been observed so far.
- ✓ Advanced to dose level 3 (Cohort 3) underway.


Clinical Development Plan

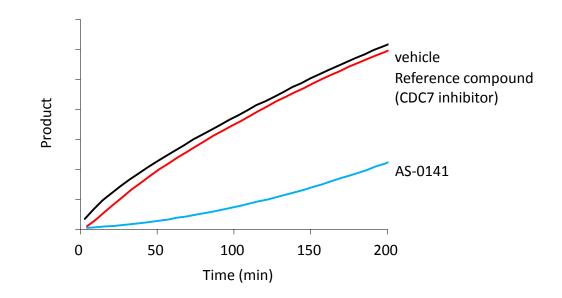
- ✓ Continuing dose escalation.
- ✓ Select dose level for expansion phase.
- ✓ Exploring multiple types of solid tumors.

CARNA BIOSCIENCES


CDC7 kinase inhibitor

CDC7 (cell division cycle 7) is a serine-threonine kinase that plays a critical role in DNA synthesis and is required for the activation of DNA replication origins throughout the S phase of the cell cycle. Inhibition of CDC7 in cancer cells causes lethal S phase or M phase progression, whereas normal cells survive, most likely through induction of cell cycle arrest at the DNA replication checkpoint. It has been reported in the literature that CDC7 is overexpressed in many cancers. Therefore, CDC7 is an attractive target for cancer drug development.

 AS-0141 has a unique inhibitory mechanism for CDC7 kinase (time-dependent inhibition)

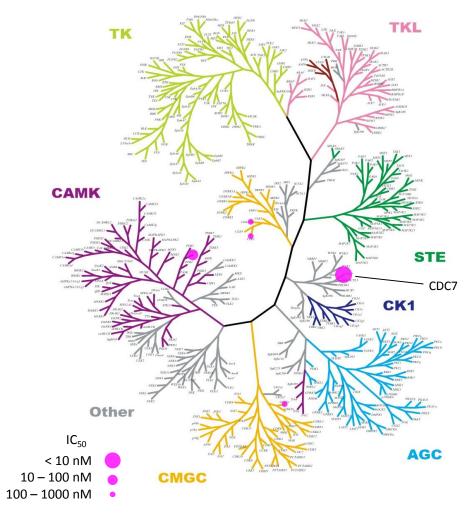


Preincubation	Preincubation	
503 nM	2.4 nM	

J Med Chem. 2021 Oct 14;64(19):14153-14164.

 AS-0141 inhibits CDC7 in a reversible fashion but has a very slow off-rate

Rapid dilution assay for Cdc7 inhibitors. Recovery of enzymatic activity was monitored by formation of the phosphorylated product.



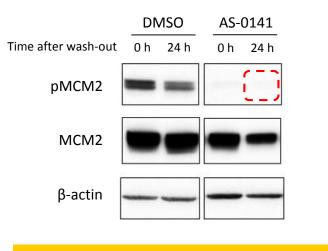
AS-0141: High Kinase Selectivity

Kinase Selectivity Profiling

In the presence of 1 mM ATP with preincubation

• IC_{50} values of hit kinases (at 1 mM ATP)

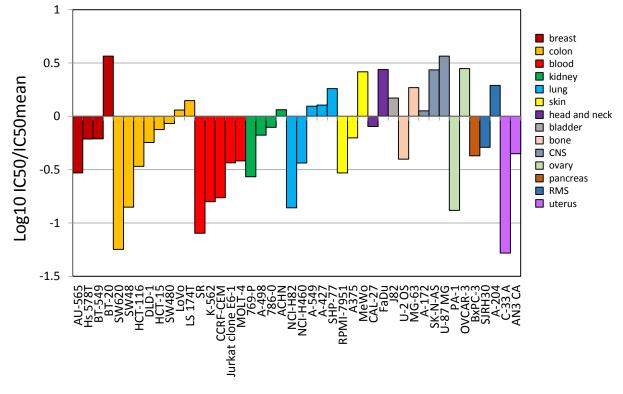
	IC ₅₀ (nM)				
	Preincucabation				
	-	+			
CDC7	503 — ₂₁₀	→ 2.4			
PIM1	30	34			
CLK1	212	206			
CLK2	270	227			
GSK3a	189	251			

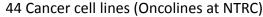

CDC7 is the only kinase that shows preincubation effect

J Med Chem. 2021 Oct 14;64(19):14153-14164.

CARNA BIOSCIENCES

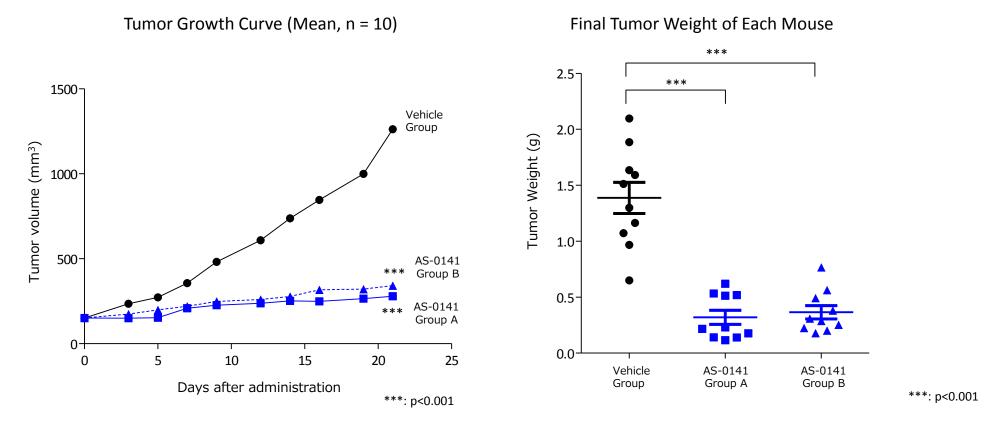
• Prolonged inhibition in cells


Human colon cancer cell line, Colo-205 cells were treated with DMSO control or AS-0141. After washout of the inhibitor, the cells were further incubated in the same media for 0 or 24 h and subjected to western blot analysis.



the inhibitory effect of AS-014 on the phosphorylation of MCM2 in cells continued up to 24 h after washing out

J Med Chem. 2021 Oct 14;64(19):14153-14164.

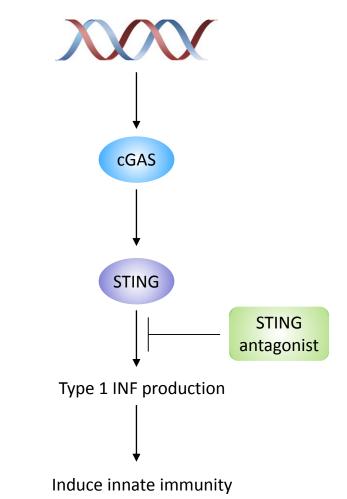

 AS-0141 potently inhibited growth in a wide range of tumor cell lines, including solid and hematological tumors

AS-0141: Robust In Vivo Antitumor Efficacy

• In vivo antitumor efficacy of AS-0141 in a SW620 (human colon cancer) xenograft mouse model

AS-0141 group A: 60 mg/kg TID, 4d ON/2d OFF AS-0141 group B: 120 mg/kg QD

J Med Chem. 2021 Oct 14;64(19):14153-14164.


ARNA BIOSCIENCES

CARNA BIOSCIENCES

- ✓ The cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) signaling pathway plays a central role in innate immunity.
- ✓ The cGAS-STING signaling is activated in response to the presence of cytosolic DNAs produced by microbial infection or cellular stress. The activated cGAS-STING signaling induces type I interferons (IFNs) production to trigger immune responses for host defense.
- ✓ It has been reported that aberrant cGAS-STING signaling is implicated in the pathogenesis of several diseases. Mutations in several genes have been identified that cause the constitutive activation of the cGAS-STING pathway, resulting in severe autoinflammation in lung, kidney, joint, etc.
- ✓ Moreover, numbers of non-genetic diseases are also suggested to be associated with the aberrant cGAS-STING signaling. These include a subset of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and several cancers.
- There is a high unmet medical need to develop novel STING antagonists to treat these diseases. (ref.1)
- ✓ Recently, a research paper was published suggesting that STING antagonist has a potential to treat severe lung inflammation induced by SARS-Cov-2. (ref.2)

Decout A., et al. Nat Rev Immunol. 2021 Sep;21(9):548-569.
 Di Domizio J., et al. Nature. 2022 Jan 19. doi: 10.1038/s41586-022-04421-w.

Cytosolic DNAs produced by microbial infection or cellular stress

Potential Revenue from Out-licensed Programs

 Carna is in license agreements with the pharmaceutical companies listed below and eligible to receive milestone payments upon achievement of certain development and commercial milestones. Carna will also receive royalties on future net sales.

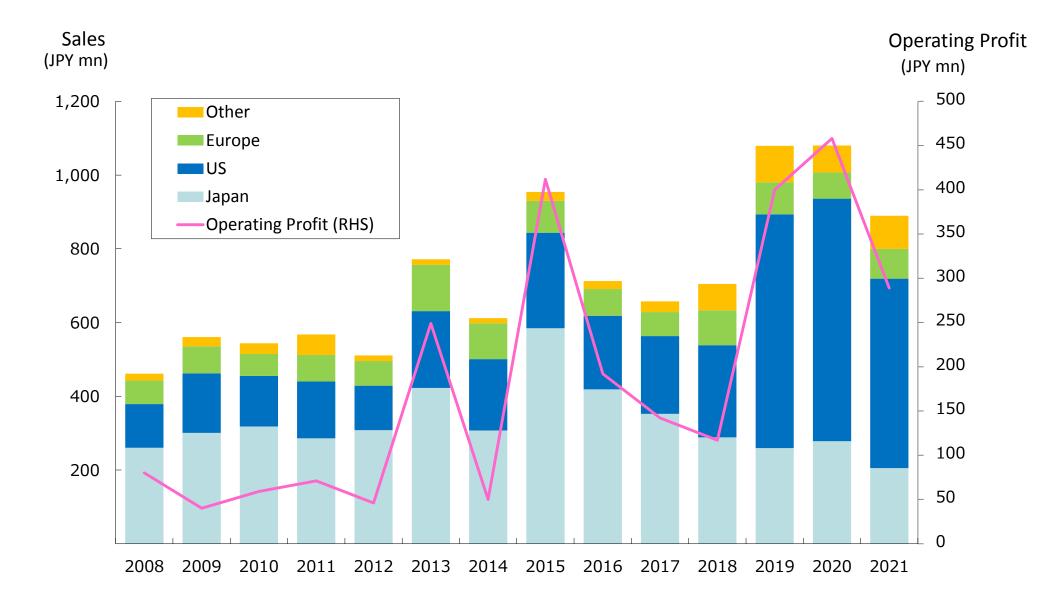
< License/joint research agreements with pharmaceutical companies >

Partner	Compound (Target)	Upfront payment	Total milestone payments expected	Royalty	Region	Contract date
Sumitomo Dainippon Pharma (Joint research)	Kinase inhibitor (Psychiatric and neurological disorders)	JPY80M (including research milestone)	JPY10.6B	Undisclosed	Worldwide	Mar. 2018
Gilead Sciences (Out-license)	Kinase inhibitor (Immuno- oncology)	\$20M	\$450M	Undisclosed	Worldwide	Jun. 2019
BioNova Pharmaceuticals (Out-license)	AS-1763	Undisclosed	\$205M	Up to two digits %	Greater China	Mar. 2020
Brickell Biotech (Out-license)	STING Antagonist	\$2M	\$258M	Up to 10%	Worldwide	Feb. 2022

* The amount and timing of milestone payments as well as royalty rates are not disclosed due to the agreements with the partners.

Drug Discovery Support (ddSP) Business

- ddSP business offers scientists worldwide key resources for their kinase inhibitor research including kinase proteins, assay kits, profiling and screening services, and cell-based assay services.
- Our customers include top 10 pharmaceutical companies and biotech companies worldwide.
- Our commitment to quality, including enzyme activity, purity, variability among others, leads to repeat orders and helps keeping our corporate image.
 - High quality kinase proteins
 - ✓ Lineup of approximately 460 products that are important for drug discovery research
 - ✓ Biotinylated Kinases of 130 kinds.
 - Accurate profiling service
 - ✓ Validated Kinase Panel that well cover the Human kinome (>300 kinases)
 - Assay kits and assay development that satisfy customer needs
 - **Cell-based assay services that provide further support to customers**
 - ✓ NanoBRET[™] TE Intracellular Kinase Cell-Based Assay
 - ✓ ACD's Tyrosine Kinase Cell-Based Assay
 - ✓ NTRC's Oncolines[™], panel of cancer cell lines


ARNA BIOSCIENC

- The demand for kinase inhibitor research services is strong in North America and China. More stable demand in Japan.
- Major competitors include Thermo Fisher Scientific(US), Eurofins(EU), SignalChem(Canada), and Reaction Biology(US) while no competitors exist in Japan.
- ✓ Carna is the only drug discovery support service provider specialized in kinase inhibitors.
- ✓ Carna is the only major player who offers biotinylated Kinases.
- Accurate assays, detailed technical support, and product development by researchers who have experiences in drug discovery.
- ✓ Focusing on cell-based assay services including NanoBRET[™] TE Intracellular Kinase Assays, assay service licensed from Promega Corporation for which Carna recently launched a new full panel service.

Business Plan

> Advance clinical trials of our innovative pipelines to maximize corporate value

Started internal drug discovery activity	Demonstrated strong capabilities in drug discovery	Maximize the value of pipelines	Continue delivering profits	
2010-2015	2016-2020	2021-2025 (Plan)	2026-2030 (Plan)	
 Established in-house research capability Established pipeline 	 Out-licensed multiple programs Initiated clinical trials 	 Advance clinical trials of AS-0871, AS-1763, and AS-0141 Receive milestone payments from the out- licensed programs and deliver profits Initiate pre-clinical and clinical studies of new pipelines 	 Receive milestone payments and royalty income from the out-licensed programs and expand profits Earn revenue from new license deals Initiate pre-clinical and clinical studies of new pipelines 	

<ddRD>

✓ Advance clinical trials of AS-0871, AS-1763, and AS-0141

- ✓ Create next wave of pipeline
- Receive milestone payments and royalty income from out-licensed programs

- Expand sales of in-house developed products and services in North America and Asia
- Secure sustainable sales growth by launching new products and services and reaching out to new customers
- Generate cash to invest in ddRD

Business Plan

(JPY million)	FY2021 Actual	FY2022 Plan	Outlook for 2023 - 2026	
Total Sales	2,017	1,127		
ddSP business	889	900	Maintain stable sales	
ddRD business	1,128	227	Revenue from milestone payments and upfront payments	
Total Operating Loss	(531)	(1,730)		
ddSP business	289	300	Maintain stable profit while investing in product developments	
ddRD business	(820)	(2,031)	Continue to invest in R&D and deliver profits depending on the size of milestone payments and upfront payments	
Ordinary Loss	(522)	(1,744)		
Net Loss	(534)	(1,799)		
(JPY million)	FY2021 Actual	FY2022 Plan	Outlook for 2023 – 2026	
R&D Cost	1,841	2,166	Invest in R&D (JPY1 bn to 2.5 bn) for the future growth.	
Сарех	41	124	Invest in equipment for R&D and IT system (JPY20 mn to 100 mn).	


* Business plan for FY2022 includes an upfront payment from Brickell Biotech but does not include milestone payments and upfront payments related to other license agreements as the timing or the amounts are difficult to predict. Numerical targets for 2023-2026 are not disclosed for the same reason.

ddRD: Drug Discovery R&D business ddSP: Drug Discovery Support Business

Key Milestones for 2022

Business		Key Milestones				
		2021	2022	2023 and beyond		
ddRD	AS-0871	Initiate Ph1 MAD part (H2 2021) (Achieved in Dec. 2021)	Start partnering activity	□ Out-license		
	AS-1763	<pre>Initiate Ph1 (H1 2021) (Achieved in Apr. 2021)</pre>	Initiate Ph1b (US)	Proceed clinical trial and partnering activity		
	AS-0141	Initiate Ph1 (H1 2021) (Achieved in Jun. 2021)	Initiate Ph1 expansion part	Proceed clinical trial and partnering activity		
	Research program	Bring one or more programs in preclinical stage (Achieved in Dec. 2021)	Bring one or more programs in preclinical stage or license a program (Achieved in Feb. 2022)	Bring one or more programs in preclinical stage		
ddSP		 Achieve sales target of JPY920 mn Launch new products Expand NanoBRET service Propose project-based service to collaborate with clients, leveraging Carna's drug discovery technology 	 Expand sales of in-house developed products and services Expand line-up of protein kinase products Increase target kinases to expand profiling service Seek collaboration opportunities to boost Carna's business 	 Expand sales of in-house developed products and services Expand line-up of protein kinase products Increase target kinases to expand profiling service Collaboration opportunities to boost Carna's business 		

 In order to advance clinical trials, we aim to maintain adequate cash position by generating cash from Drug Discovery Support(ddSP) business and licensing, as well as by raising funds from capital markets.

(JPY million)		As of Dec. 31, 2020	As of Dec. 31, 2021	Change
Current assets		4,708	5,318	+610
	Cash and deposits	4,299	3,817	-481
Non-current Assets		127	114	-13
Total assets		4,835	5,432	+597
Current liabilities		727	774	+47
Non-current liabilities		284	342	+58
Total liabilities		1,011	1,116	+105
Total net assets		3,824	4,315	+491
Total liabilities and net assets		4,835	5,432	+597

Appendix

Building Long-Term Value

Our goal is to deliver innovative therapies for patients suffering from serious diseases

2003 - 2021

- Founding members who had expertise in kinase drug discovery technology spun out from Nippon Organon and established Carna.
- Started offering kinase proteins and screening services to pharmaceutical companies for kinase inhibitor drug discovery.
- In 2010, Drug Discovery Group was established to conduct internal drug discovery.
- Entered into four license agreements and one joint-development agreement with pharmaceutical companies.
- Initiated FIH study of BTK inhibitor AS-0871.

2022 Plan

- Conducting Phase 1 studies of BTK inhibitor AS-0871, AS-1763, and CDC7 inhibitor AS-0141.
- Strengthening global clinical development capability.
- Advance research programs and initiate preclinical development.

Long term plan

- Advance clinical studies of AS-0871, AS-1763, and AS-0141 and earn upfront payments and milestone payments from out-licensing the pipelines.
- Receive milestone payments and royalties from licensees and strengthen financial position.
- Create next wave of pipeline.

Management Team

Directors

Kohichiro Yoshino, Ph.D. President & Chief Executive Officer, Representative Director

Dr. Yoshino founded Carna Biosciences in 2003 as a spin-out venture from Nippon Organon, a subsidiary of N.V. Organon where he was the head of the Osaka Research Center. As a member of Organon Research Committee, Dr. Yoshino contributed to research and development of NV Organon. Before joining Nippon Organon, he engaged in the research and development of small molecule drugs at Kanebo Corporation Inc. From 2004 to 2008, he was a Visiting Professor at Center for Advanced Science and Innovation, Osaka University. He earned M.S. in Chemistry from the Graduate School of Tokyo Institute of Technology and Ph.D. from Kyoto University.

Norio Aikawa Head of Drug Discovery and Support Business, Head of IP and Legal Department, Director

Mr. Aikawa is one of the founding member of Carna Biosciences. Mr. Aikawa has a long and extensive experience in the area of intellectual property and has contributed to strengthening Carna's IP strategy. Before joining Carna in 2003, he was the head of Intellectual Property Department at Nippon Organon. Before that, he was the head of Intellectual Property Department at Kanebo Corporation. He holds a bachelor's degree in Science from Hirosaki University.

Masaaki Sawa, Ph.D. Chief Scientific Officer, Director

Dr. Sawa built the current drug discovery group at Carna. Before joining Carna, he held positions at Sumitomo Dainippon Pharma.
Prior to that, he was a medicinal chemist at Nippon Organon, a subsidiary of N.V. Organon.
From 2004 to 2006, he was a visiting scientist at the Scripps Research Institute in San Diego.
Dr. Sawa was a Visiting Professor at Graduate School of Medicine, Kobe University from 2013 to 2015.
He received his Ph.D. from Kyoto University.

Emi Yamamoto Chief Financial Officer, Director, President of CarnaBio USA, Inc.

Ms. Yamamoto joined Carna Biosciences in 2004 after engaged in fund administration at CSK Venture Capital. She built Carna's accounting and business management group and held a responsible role in Carna's IPO. Since 2017, she leads administration group, in charge of accounting, finance, human resources, and corporate planning.

Ms. Yamamoto holds a bachelor's degree in Business Administration from Aoyama Gakuin University, and a Certified Public Accountant.

Management Team

Directors

Atsuo Arita Outside Director

Before joining the Board of Directors in 2020, Mr. Arita served as External Auditor of Carna Biosciences from 2004 to 2020, overseeing its management as a full-time company auditor. He held various responsible roles in accounting, finance, and sales management at Kanebo Corporation Ltd. and was the head of business management at Kanebo.

He holds a bachelor's degree in Business and Commerce from Keio University.

Outside Director

Mr. Ogasawara served as External Auditor of Carna Biosciences from 2005 to 2020 before joining the Board of Directors in 2020. He has brought Carna his extensive experience in international business. He was a Director at Chugai Pharmaceutical Co. Ltd., in charge of international business. Prior to that, he was engaged in business management, finance, and international business at Toray Industries, Inc. He holds a bachelor's degree in Economics from Keio University.

Teruo Takayanagi, Ph.D. Outside Director

Dr. Takayanagi joined the Board of Directors of Carna Biosciences in 2015. He was the Director of Daiichi Pharmaceutical Co., Ltd. from 2001 to 2006 where he engaged in the R&D management and led post-marketing surveillance to promote proper use of its pharmaceutical products. He also held a responsible role in business integration with Sankyo. He was a full-time Auditor of Daiichi Sankyo Company, Limited from 2007 to 2011. Dr. Takayanagi is Board Member of Showa Pharmaceutical University, part-time Lecturer of Nagoya University, and Auditor of Japanese Society of Drug Informatics.

Dr. Takayanagi received his Ph.D. from the University of Tokyo.

Takao Matsui Outside Director

Mr. Matsui served as External Auditor of Carna Biosciences since 2019 to 2020 before joining the Board of Directors in 2020. He has over 35 years of experience in financial audit and related advisory business. He served as Certified Public Accountant at KPMG AZSA LLC. from 1982 to 2018. Mr. Matsui also currently serves as Outside Director of AIR WATER, INC. He was a Specially Appointed Professor at School of Accountancy, Kansai University since April 2018 to March 2020. He is a part-time lecturer at Kansai University and School of Accountancy, Kansai University since April 2020.

Mr. Matsui holds a bachelor's degree in School of Business Administration from Kwansei Gakuin University, and a Certified Public Accountant.

"Carna" is a goddess of Roman mythology who takes care of human health, protecting the human heart and other organs as well as everyday life, and is said to be the root for the word "cardiac."

The word "biosciences" is derived from the words 'biology' and 'life sciences.'

Carna Biosciences has created contemporary Carna goddess with protein kinase.

Carna Biosciences, Inc.

Corporate Planning BMA3F 1-5-5 Minatojia-Minaimachi, Chuo-ku, Kobe 650-0047 <u>https://www.carnabio.com/</u> ir-team@carnabio.com

This document was prepared for the sole purpose of providing information to investors and is not intended as a solicitation for investment.

The forward-looking statements contained in this document are based on our plans and estimation and do not imply a commitment or guarantee of actual outcomes.

Investors should aware that the actual performance of the company could be materially different from our current forecasts.

The statements on the industry and other information were prepared based on the data assumed to be reliable. However, no guarantee is given regarding the accuracy or completeness of the information.

This document is presented on the assumption that all investors will make use of this document on their own judgment and responsibilities regardless of their purposes. Therefore, we do not assume no responsibility for any consequence caused by using this document.