

News Release

November 4, 2025 Carna Biosciences, Inc.

Carna announces acceptance of two posters on docirbrutinib for presentation at the 67th ASH Annual Meeting

Carna Biosciences, a clinical-stage biopharmaceutical company focusing on the discovery and development of innovative therapies to treat serious unmet medical needs, today announces that two posters on docirbrutinib (AS-1763) will be presented at the 67th American Society of Hematology (ASH) Annual Meeting & Exposition.

Docirbrutinib, an investigational small molecule drug designed to non-covalently inhibit Bruton's tyrosine kinase (BTK) in a highly selective manner, is currently under development for the treatment of patients with chronic lymphocytic leukemia (CLL) and other B-cell malignancies who have developed resistance or are intolerant to at least two prior lines of systemic therapy including existing covalent/non-covalent BTK inhibitors. Updated clinical data from the ongoing Phase 1b study of docirbrutinib will be presented by Prof. Nitin Jain, MD, Department of Leukemia, The University of Texas MD Anderson Cancer Center, along with all other principal investigators from participating clinical sites. In addition, a scientist from Carna will present new preclinical findings on docirbrutinib featuring its efficacy in BTK inhibitor-resistant mutant cells, in collaboration with Prof. Varsha Gandhi, Ph.D., Department of Translational Molecular Pathology, MD Anderson. The ASH Annual Meeting and Exposition will take place December 6-9, 2025, in Orland. Florida.

Presentation Details

Publication Number: 3892

Poster title:	Docirbrutinib (AS-1763), a novel non-COVALENT pan-mutant BTK inhibitor,
	demonstrates durable clinical responses in patients with previously treated B-
	cell malignancies: Data from an ongoing Phase 1b study
Session:	Chronic Lymphocytic Leukemia: Clinical and Epidemiological: Poster II
Session date:	December 7, 2025
Presenter:	Nitin Jain ¹ , Catherine C. Coombs ² , James D'Olimpio ³ , Nirav N. Shah ⁴ , Jacqueline Barrientos ⁵ , Seung Tae Lee ⁶ , John Nemunaitis ⁷ , Danielle M.
	Brander ⁸ , Andrew Gillis-Smith ⁹ , Shuo Ma ¹⁰ , Shirou Kirita ¹¹ , Koji Yoshida ¹¹ ,
	Masaaki Sawa ¹¹ , Kyoko Miyamoto ¹² , Akinori Arimura ^{11,12} , William G. Wierda ¹ ,
	Varsha Gandhi ^{13,} Javier Pinilla-Ibarz ¹⁴

¹ Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, ² Division of Hematology/Oncology, Department of Medicine, University of California Irvine Health, Irvine, CA, ³ Clinical Research Alliance, Westbury, NY, ⁴ Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, ⁵ Mount Sinai Medical Center, Miami Beach, FL, ⁶ Greenebaum Comprehensive Cancer, University of Maryland Medical Center, Baltimore, MD, ⁷ Taylor Cancer Research Center, Maumee, OH, ⁸ Division of Hematologic Malignancies and Cellular

Therapy, Duke Cancer Institute, Durham, NC, ⁹ Hematology/Oncology, UMass Chan Medical School/UMass Memorial Medical Center, Worcester, MA, ¹⁰ Division of Hematology-Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, ¹¹ Carna Biosciences, Inc., Kobe, Japan, ¹² CarnaBio USA, Inc., South San Francisco, CA, ¹³ Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, ¹⁴ H Lee Moffitt Cancer Center and Research Institute, Moffitt Cancer Center, Tampa, FL

The abstract is now available at: https://meetings-api.hematology.org/api/abstract/vmpreview/293372

Publication Number: 5077

Poster title:	Docirbrutinib (AS-1763), a novel non-COVALENT BTK inhibitor, demonstrates
	efficacy in BTK inhibitor-resistant mutant cells
Session:	605. Molecular Pharmacology and Drug Resistance: Lymphoid Neoplasms:
	Poster III
Session date:	December 8, 2025
Presenter:	Tokiko Asami¹, Hitomi Fujiwara¹, Hiroko Endo¹, Natalia Timofeeva², Mariko
	Hatakeyama ¹ , Fumio Nakajima ¹ , Kyoko Miyamoto ³ , Akinori Arimura ³ , Yu
	Nishioka ¹ , Nitin Jain ⁴ , Varsha Gandhi ⁴ , and Masaaki Sawa ¹

¹Carna Biosciences, Inc., Kobe, Japan; ²Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, ³CarnaBio USA, Inc., South San Francisco, CA, ⁴Department of Leukemia, MD Anderson Cancer Center, Houston, TX

The abstract is now available at: https://meetings-api.hematology.org/api/abstract/vmpreview/292987

About docirbrutinib (AS-1763)

Docirbrutinib is a highly selective, orally bioavailable, non-covalent inhibitor of both the wild type and mutant BTKs for the treatment of CLL and other B cell malignancies. Covalent BTK inhibitors including ibrutinib are key therapeutic options for patients with B cell malignancies. However, patients are reported to develop resistance during the treatment due to substitution of cysteine residue at 481 position with serine (C481S - 2-mutation) in BTK, which reduces the efficacy of the covalent BTK inhibitors. In addition, the emergence of other types of resistance mutations to non-covalent BTK inhibitor, recently approved pirtobrutinib, has been reported. Docirbrutinib potently inhibited both wild type and those mutant BTKs, strongly suggesting that docirbrutinib will be a new therapeutic option for treating patients with B cell malignancies both having wild type and resistance mutations in BTK. Carna is advancing development of docirbrutinib as a nextgeneration BTK inhibitor. The Phase 1b study of docirbrutinib is being conducted in the U.S. and dosing in the dose expansion part is ongoing (NCT05602363).

Contact:

Corporate Planning Carna Biosciences, Inc. TEL: +81-78-302-7075

https://www.carnabio.com/english/