Custom and Pre-Selected Kinase Profiling to fit your Budget and Needs! # **Kinase Profiling Book** As of October 1, 2023 # Profiling Assays available from Carna Biosciences, Inc. As of October 1, 2023 | Page | Kinase Name | Assay Platform | |-----------------------|---|--------------------| | 5 | ABL(ABL1) | MSA | | 5 | ABL(ABL1)[E255K] | MSA | | 5 | ABL(ABL1)[T315I]
ACK(TNK2) | MSA
MSA | | 5
5
5
6 | ACK(TNKZ) AKT1 | MSA | | 6 | AKT2 | MSA | | 6 | AKT3 | MSA | | 6
6 | ALK
ALK[C1156Y] | MSA
MSA | | 6 | ALK[C1156Y]
ALK[F1174L] | MSA
MSA | | 6
7
7
7
7 | ALK[G1202R] | MSA | | 7 | ALK[G1269A] | MSA | | 7 | ALK[L1196M]
ALK[R1275O] | MSA | | 7 | ALK[K1275Q]
ALK[T1151_L1152insT] | MSA
MSA | | 8 | EML4-ALK | MSA | | 8 | NPM1-ALK | MSA | | 8
8 | AMPKα1/β1/γ1(PRKAA1/B1/G1) | MSA
MSA | | 8 | AMPKα2/β1/γ1(PRKAA2/B1/G1)
ARG(ABL2) | MSA | | 9 | AurA(AURKA) | MSA | | 9 | AurA(AURKA)/TPX2 | MSA | | 9 | AurB(AURKB)/INCENP
AurC(AURKC) | MSA | | 9 | AUIC(AURRC) | MSA
MSA | | 10 | BLK | MSA | | 10 | BMX | MSA | | 10 | BRK(PTK6) | MSA | | 10
10 | BRSK1
BRSK2 | MSA
MSA | | 11 | BTK | MSA | | 11 | BTK[C481S] | MSA | | 11 | BUB1/BUB3 | MSA
MSA | | 11
11 | CaMK1α(CAMK1)
CaMK1δ(CAMK1D) | MSA
MSA | | 12 | CaMK2a(CAMK2A) | MSA | | 12 | CaMK2β(CAMK2B) | MSA | | 12
12 | CaMK2y(CAMK2G) | MSA
MSA | | 12 | CaMK2δ(CAMK2D)
CaMK4 | MSA | | 13 | CDC7/ASK | MSA | | 13 | CDK1(CDC2)/CycB1 | MSA | | 13
13 | CDK2/CycA2 | MSA
MSA | | 13 | CDK2/CycE1
CDK3/CycE1 | MSA | | 14 | CDK4/CycD3 | MSA | | 14 | CDK5/p25 | MSA | | 14
14 | CDK6/CycD3
CDK7/CycH/MAT1 | MSA
MSA | | 14 | CDK9/CycT1 | MSA | | 15 | CGK2(PRKG2) | MSA | | 15 | CHK1(CHEK1) | MSA | | 15
15 | CHK2(CHEK2)
CK1a(CSNK1A1) | MSA
MSA | | 15 | CK1y1(CSNK1G1) | MSA | | 16 | CK1y2(CSNK1G2) | MSA | | 16
16 | CK1y3(CSNK1G3) | MSA | | 16 | CK1δ(CSNK1D)
CK1ε(CSNK1E) | MSA
MSA | | 16 | CK2a1/ß(CSNK2A1/B) | MSA | | 17 | CK2α2/β(CSNK2A2/B) | MSA | | 17
17 | CLK1
CLK2 | MSA
MSA | | 17 | CLK2
CLK3 | MSA | | 17 | CRIK(CIT) | MSA | | 18 | CSK
DAPK1 | MSA
MSA | | 18
18 | DCAMKL2 | MSA
MSA | | 18 | DDR1 | MSA | | 18 | DDR2 | MSA | | 19
19 | DGKa(DGKA)
DGKβ(DGKB) | ADP-Glo | | 19 | DGKB(DGKB) DGKy(DGKG) | ADP-Glo
ADP-Glo | | 19 | DGKδ(DGKD) | ADP-Glo | | 19 | DGKs(DGKE) | ADP-Glo | | 20
20 | DGKζ(DGKZ)
DGKη(DGKH) | ADP-Glo
ADP-Glo | | 20 | DGKI(DGKH) DGKθ(DGKQ) | ADP-GIO
ADP-GIo | | 20 | DGKI(DGKI) | ADP-Glo | | 20 | DGKK(DGKK) | ADP-Glo | | 21
21 | DYRK1A
DYRK1B | MSA
MSA | | 21 | DYRK2 | MSA
MSA | | 21 | DYRK3 | MSA | | 21 | EEF2K | MSA | | Page | Kinase Name | Assay Platform | |----------|--|----------------| | 22
22 | EGFR
EGFR[C797S/L858R] | MSA
MSA | | 22 | EGFR[d746-750] | MSA | | 22 | EGFR[d746-750/C797S] | MSA | | 22
23 | EGFR[d746-750/T790M]
EGFR[d746-750/T790M/C797S] | MSA
MSA | | 23 | EGFR[D770_N771insNPG] | MSA | | 23 | EGFR[L858R] | MSA | | 23
23 | EGFR[L861Q]
EGFR[T790M] | MSA
MSA | | 24 | EGFR[T790M/C797S/L858R] | MSA | | 24 | EĞFR[T790M/L858R] | MSA | | 24
24 | EPHA1
EPHA2 | MSA
MSA | | 24 | EPHA3 | MSA | | 25 | EPHA4 | MSA | | 25 | EPHA5 | MSA | | 25
25 | EPHA6
EPHA7 | MSA
MSA | | 25 | EPHA8 | MSA | | 26 | EPHB1 | MSA | | 26
26 | EPHB2
EPHB3 | MSA
MSA | | 26 | EPHB4 | MSA | | 26 | Erk1(MAPK3) | MSA | | 27
27 | Erk2(MAPK1)
Erk5(MAPK7) | MSA
MSA | | 27
27 | FAK(PTK2) | MSA
MSA | | 27 | ÈER ´ | MSA | | 27 | FES | MSA | | 28
28 | FGFR1
FGFR1[V561M] | MSA
MSA | | 28 | FGFR2 | MSA | | 28 | FGFR2[V564I] | MSA | | 28
29 | FGFR3
FGFR3[K650E] | MSA
MSA | | 29 | FGFR3[K650M] | MSA | | 29 | FGFR3[V555L] | MSA | | 29
29 | FGFR3[V555M]
FGFR4 | MSA
MSA | | 30 | FGFR4[N535K] | MSA | | 30 | FGFR4[V550E] | MSA | | 30
30 | FGFR4[V550L]
FGR | MSA
MSA | | 30 | FLT1 | MSA | | 31 | FLT3 | MSA | | 31
31 | FLT4
FMS(CSF1R) | MSA
MSA | | 31 | FRK | MSA
MSA | | 31 | FYN[isoform a] | MSA | | 32 | FYN[isoform b] | MSA
MSA | | 32
32 | GSK3a(GSK3A)
GSK3ß(GSK3B) | MSA
MSA | | 32 | Haspin(GSG2) | MSA | | 32 | HCK | MSA | | 33
33 | HER2(ERBB2)
HER4(ERBB4) | MSA
MSA | | 33 | HGK(MAP4K4) | MSA | | 33 | HIPK1 | MSA | | 33
34 | HIPK2
HIPK3 | MSA
MSA | | 34 | HIPK4 | MSA | | 34 | HPK1(MAP4K1) | MSA
MSA | | 34
34 | IGF1R
IKKa(CHUK) | MSA
IMAP | | 35 | IKKβ(IKBKB) | MSA | | 35 | IKKE(IKBKE) | MSA | | 35
35 | INSR
IRAK1 | MSA
IMAP | | 35 | IRAK4 | MSA | | 36 | IRR(INSRR) | MSA | | 36
36 | ITK
JAK1 | MSA
MSA | | 36 | JAK2 | MSA | | 36 | JAK3 | MSA | | 37
37 | JNK1(MAPK8)
JNK2(MAPK9) | MSA
MSA | | 37 | JNK3(MAPK10) | MSA | | 37 | KDR | MSA | | 37
38 | KIT
KIT[D816E] | MSA
MSA | | 38 | KIT[D816E]
KIT[D816V] | MSA
MSA | | 38 | KIT[D816Y] | MSA | | 38
38 | KIT[T670I]
KIT[V560G] | MSA
MSA | | ٥٥ | MILLANDOCAL | אכויו | | Page | Kinase Name | Assay Platform | |----------|--|--------------------| | 39 | KIT[V654A] | MSA | | 39 | LATS1/MOBKL1A | MSA | | 39 | LATS2/MOBKL1A | MSA | | 39
39 | LCK
LOK(STK10) | MSA
MSA | | 40 | LTK | MSA | | 40 | LYNa | MSA | | 40 | LYNb | MSA | | 40 | MAP4K2 | MSA | | 40
41 | MAPKAPK2
MAPKAPK3 | MSA
MSA | | 41 | MAPKAPK5 | MSA | | 41 | MARK1 | MSA | | 41 | MARK2 | MSA | | 41 | MARK3 | MSA | | 42
42 | MARK4 | MSA | | 42 | MELK
MER(MERTK) | MSA
MSA | | 42 | MET | MSA | | 42 | MET[D1228H] | MSA | | 43 | MET[M1250T] | MSA | | 43 | MET[Y1235D] | MSA | | 43
43 | MINK(MINK1)
MNK1(MKNK1) | MSA
MSA | | 43 | MNK2(MKNK1) | MSA
MSA | | 44 | MRCKa(CDC42BPA) | MSA | | 44 | MRCKβ(CDC42BPB) | MSA | | 44 | MSK1(RPS6KA5) | MSA | | 44
44 | MSK2(RPS6KA4)
MSSK1(STK23) | MSA
MSA | | 44 | MSSKI(STK23)
MST1(STK4) | MSA
MSA | | 45 | MST2(STK4) | MSA | | 45 | MST3(STK24) | MSA | | 45 | MST4 | MSA | | 45
46 | MUSK | MSA | | 46 | NDR1(STK38)
NDR2(STK38L) | MSA
MSA | | 46 | NEK2(STRSGE) | MSA | | 46 | NEK2 | MSA | | 46 | NEK4 | MSA | | 47 | NEK6 | MSA | | 47
47 | NEK7
NEK9 | MSA
MSA | | 47 | NIM1K(MGC42105) | MSA | | 47 | NuaK1 | MSA | | 48 | NuaK2 | MSA | | 48 | p38a(MAPK14) | MSA | | 48
48 | p38β(MAPK11) | MSA
MSA | | 48 | p38γ(MAPK12)
p38δ(MAPK13) | MSA
MSA | | 49 | p70S6K(RPS6KB1) | MSA | | 49 | p70S6Kβ(RPS6KB2) | MSA | | 49 | PAK1 | MSA | | 49
49 | PAK2
PAK4 | MSA
MSA | | 50 | PAK 1
PAK5(PAK7) | MSA
MSA | | 50 | PAK6 | MSA | | 50 | PASK | MSA | | 50 | PBK | MSA | | 50
51 | PDGFRa(PDGFRA) | MSA
MCA | | 51
51 | PDGFRa(PDGFRA)[D842V]
PDGFRa(PDGFRA)[T674I] | MSA
MSA | | 51 | PDGFRa(PDGFRA)[V561D] | MSA | | 51 | PDGFRβ(PDGFRB) | MSA | | 51 | PDHK2(PDK2) | MSA | | 52
52 | PDHK4(PDK4)
PDK1(PDPK1) | MSA
MSA | | 52 | PEK(EIF2AK3) | IMAP | | 52 | PGK(PRKG1) | MSA | | 52 | PHKG1 | MSA | | 53 | PHKG2 | MSA
ADD Clo | | 53
53 | PIK3CA/PIK3R1
PIK3CA[E542K]/PIK3R1 | ADP-Glo
ADP-Glo | | 53 | PIK3CA[E542K]/PIK3K1
PIK3CA[E545K]/PIK3R1 | ADP-GIO
ADP-GIo | | 53 | PIK3CA[H1047R]/PIK3R1 | ADP-Glo | | 54 | PIK3CA[P539R]/PIK3R1 | ADP-Glo | | 54 | PIK3CA[R88Q]/PIK3R1 | ADP-Glo | | 54
54 | PIK3CB/PIK3R1
PIK3CD/PIK3R1 | ADP-Glo
ADP-Glo | | 54 | PIKSCD/PIKSKI
PIKFYVE(PIP5K3) | ADP-GIO
ADP-GIo | | 55 | PIM1 | MSA | | 55 | PIM2 | MSA | | 55 | PIM3 | MSA | | 55
55 | PIP4K2A | ADP-Glo | | 55
56 | PIP4K2B
PIP5K1A | ADP-Glo
ADP-Glo | | 56 | PIP5KIA
PIP5K1B | ADP-Glo | | 56 | PIP5K1C | ADP-Glo | | 56 | PIP5KL1 | ADP-Glo | | 56 | PKACa(PRKACA) | MSA | | Page | Kinase Name | Assay Platform | |--|---|---| | 57
57
57
57
58
58
58
58
58
58
59 | PKACβ(PRKACB) PKACγ(PRKACG) PKCa(PRKCA) PKCβ1(PRKCB1) PKCβ2(PRKCB2) PKCγ(PRKCG) | MSA
MSA
MSA
MSA
MSA | | | PKCŏ(PRKCD) PKCɛ(PRKCE) PKCζ(PRKCZ) PKCη(PRKCH) PKCΘ(PRKCQ) PKC(PRKCI) PKCD1(PRKCI) | MSA
MSA
MSA
MSA
MSA
MSA
MSA | | 59
59
59
60 | PKD1(PKRD1)
PKD2(PKD2)
PKD3(PRKD3)
PKN1 | MSA
MSA
IMAP | | 60 | PKR(EIF2AK2) | IMAP | | 60
60 | PLK1
PLK2 | MSA
IMAP | | | PLK3 | MSA | | | SRPK1 | IMAP MSA | #### << Cascade Assay >> | Page | Kinase Name | Assay Platform | |------|---------------|----------------| | 72 | BRAF | MSA | | 72 | BRAF[V600E] | MSA | | 72 | COT(MAP3K8) | MSA | | 72 | DLK(MAP3K12) | MSA | | 72 | MAP2K1 | MSA | | 73 | MAP2K2 | MSA | | 73 | MAP2K3 | MSA | | 73 | MAP2K4 | MSA | | 73 | MAP2K5 | MSA | | 73 | MAP2K6 | MSA | | 74 | MAP2K7 | MSA | | 74 | MAP3K1 | MSA | | 74 | MAP3K2 | MSA | | 74 | MAP3K3 | MSA | | 74 | MAP3K4 | MSA | | 75 | MAP3K5 | MSA | | 75 | MLK1(MAP3K9) | MSA | | 75 | MLK2(MAP3K10) | MSA | | 75 | MLK3(MAP3K11) | MSA | | 75 | MOS | MSA | | 76 | RAF1 | MSA | - The Kinase Company - ## Carna Biosciences, Inc. TEL:+81-78-302-7091 / FAX:+81-78-302-7086 Email:info@carnabio.com www.carnabio.com ABL(ABL1) Product code 08-001 Full-length human ABL [2-1130(end) amino acids of accession number NP_005148.2] was expressed as N-terminal His-tagged protein (126 kDa) using baculovirus expression system. His-tagged ABL was purified by using Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : ABLtide ATP (μ M) Km app / Bin : 16 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 75 IC50 at 1 mM ATP (nM) : 1300 ABL(ABL1)[E255K] Product code 08-094 Full-length human ABL [2-1130(end) amino acids and E255K of accession number NP_005148.2] was expressed as N-terminal Histagged protein (126 kDa) using baculovirus expression system. Histagged ABL[E255K] was purified by using Ni-NTA affinity chromatography .
Assay platform : Mobility Shift Assay Substrate : ABLtide ATP (μ M) Km app / Bin : 17 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 140 IC50 at 1 mM ATP (nM) : 4500 **ABL(ABL1)[T315I]** Product code 08-093 Full-length human ABL [2-1130(end) amino acids and T315I of accession number NP_005148.2] was expressed as N-terminal Histagged protein (126 kDa) using baculovirus expression system. Histagged ABL[T315I] was purified by using Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : ABLtide ATP (μ M) Km app / Bin : 4 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 6.4 IC50 at 1 mM ATP (nM) : 890 ACK(TNK2) Product code 08-196 Human ACK, catalytic domain [110-476 amino acids of accession number NP_005772.3] was expressed as N-terminal GST-fusion protein (69 kDa) using baculovirus expression system. GST-ACK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : WASP peptide ATP (μM) Km app / Bin : 97 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.2 IC50 at 1 mM ATP (nM) : 3.8 **AKT1** Product code 01-101 Human AKT1, catalytic domain [104-480(end) amino acids of accession number NP_005154.1] was co-expressed as N-terminal GST-fusion protein (70 kDa) with His-tagged PDK1 [1-556(end) amino acids of accession number NP_002604.1] using baculovirus expression system. GST-AKT1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Crosstide ATP (μ M) Km app / Bin : 31 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.7 IC50 at 1 mM ATP (nM) : 22 #### AKT2 Product code 01-102 Human AKT2, catalytic domain [120-481(end) amino acids of accession number NP_001617.1] was co-expressed as N-terminal GST-fusion protein (69 kDa) with His-tagged PDK1 [1-556(end) amino acids of accession number NP_002604.1] using baculovirus expression system. GST-AKT2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Crosstide ATP (μ M) Km app / Bin : 110 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 5.2 IC50 at 1 mM ATP (nM) : n.a. #### AKT3 Product code 01-103 Human AKT3, catalytic domain [108-479(end) amino acids of accession number NP_005456.1] was co-expressed as N-terminal GST-fusion protein (70 kDa) with His-tagged PDK1 [1-556(end) amino acids of accession numberNP_002604.1] using baculovirus expression system. GST-AKT3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Crosstide ATP (μ M) Km app / Bin : 54 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.2 IC50 at 1 mM ATP (nM) : n.a. #### **ALK** Product code 08-518 Human ALK , cytoplasmic domain [1058-1620(end) amino acids and I1461V, K1491R, D1529E of accession number NP_004295.2] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-ALK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 57 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.5 IC50 at 1 mM ATP (nM) : 15 #### **ALK[C1156Y]** Product code 08-530 Human ALK, cytoplasmic domain [1058-1620(end) amino acids and C1156Y, I1461V, K1491R, D1529E of accession number NP_004295.2] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-ALK[C1156Y] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 64 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.9 IC50 at 1 mM ATP (nM) : 11 ## **ALK[F1174L]** Product code 08-519 Human ALK, cytoplasmic domain [1058-1620(end) amino acids and F1174L, I1461V, K1491R, D1529E of accession number NP_004295.2] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-ALK[F1174L] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 49 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.4 IC50 at 1 mM ATP (nM) : 21 ### **ALK[G1202R]** Product code 08-544 Human ALK, cytoplasmic domain [1058-1620(end) amino acids and G1202R, I1461V, K1491R, D1529E of accession number NP_004295.2] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-ALK[G1202R] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 31 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 7.3 IC50 at 1 mM ATP (nM) : 69 #### **ALK[G1269A]** Product code 08-537 Human ALK, cytoplasmic domain [1058-1620(end) amino acids and G1269A, I1461V, K1491R, D1529E of accession number NP_004295.2] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-ALK[G1269A] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.36 IC50 at 1 mM ATP (nM) : 1.6 # **ALK[L1196M]** Product code 08-529 Human ALK, cytoplasmic domain [1058-1620(end) amino acids and L1196M, I1461V, K1491R, D1529E of accession number NP_004295.2] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-ALK[L1196M] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μM) Km app / Bin : 57 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.66 IC50 at 1 mM ATP (nM) : 4.3 ## ALK[R1275Q] Product code 08-520 Human ALK, cytoplasmic domain [1058-1620(end) amino acids and R1275Q, I1461V, K1491R, D1529E of accession number NP_004295.2] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-ALK[R1275Q] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 84 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.3 IC50 at 1 mM ATP (nM) : 16 ## ALK[T1151_L1152insT] Product code 08-539 Human ALK, cytoplasmic domain [1058-1620(end) amino acids and T1151_L1152insT, I1461V, K1491R, D1529E of accession number NP_004295.2] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-ALK[T1151_L1152insT] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (µM) Km app / Bin : 110 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 6.5 IC50 at 1 mM ATP (nM) : 16 **EML4-ALK** Product code 08-516 Fused gene of human fusion EML4-ALK [1-1059 amino acids of accession number BAF73611.1] was expressed as N-terminal GST-fusion protein (145 kDa) using baculovirus expression system. GST-EML4-ALK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 43 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.9 IC50 at 1 mM ATP (nM) : 16 **NPM1-ALK** Product code 08-517 Fused gene of human fusion NPM1-ALK [1-680 amino acids of accession number BAA08343.1] was expressed as N-terminal GST-fusion protein (103kDa) using baculovirus expression system. GST-NPM1-ALK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 57 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.4 IC50 at 1 mM ATP (nM) : 14 $AMPK\alpha 1/\beta 1/\gamma 1(PRKAA1/B1/G1)$ Product code 02-113 Full-length human AMPK α 1 [1-550(end) amino acids of accession number NP_006242.4] was co-expressed as N-terminal GST-fusion protein (90 kDa) with GST-PRKAB1 [1-270(end) amino acids of accession number NP_006244.2] and PRKAG1 [1-331(end) amino acids of accession number NP_002724.1] using baculovirus expression system. GST-AMPK α 1/ β 1/ γ 1 was purified by using glutathione sepharose chromatography and activated with Histagged CaMKK1. Activated GST-AMPK α 1/ β 1/ γ 1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SAMS peptide ATP (μM) Km app / Bin : 130 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.41 IC50 at 1 mM ATP (nM) : 0.87 $AMPK\alpha 2/\beta 1/\gamma 1(PRKAA2/B1/G1)$ Product code 02-114 Full-length human AMPK α 2 [1-552(end) amino acids of accession number NP_006243.2] was co-expressed as N-terminal GST-fusion protein (89 kDa) with GST-PRKAB1 [1-270(end) amino acids of accession number NP_006244.2] and PRKAG1 [1-331(end) amino acids of accession number NP_002724.1] using baculovirus expression system. GST-AMPK α 2/ β 1/ γ 1 was purified by using glutathione sepharose chromatography and activated with Histagged CaMKK1. Activated GST-AMPK α 2/ β 1/ γ 1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SAMS peptide ATP (μ M) Km app / Bin : 100 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.79 IC50 at 1 mM ATP (nM) : n.a. ARG(ABL2) Product code 08-102 Full-length human ARG [2-1161(end) amino acids of accession number NP_001161708.1] was expressed as N-terminal GST-fusion protein (153 kDa) using baculovirus expression system. GST-ARG was purified by using glutathione
sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : ABLtide ATP (µM) Km app / Bin : 24 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 27 IC50 at 1 mM ATP (nM) : 400 #### AurA(AURKA) Product code 05-101 Full-length human AurA [1-403(end) amino acids of accession number NP_940835.1] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-AurA was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.8 IC50 at 1 mM ATP (nM) : 17 ## AurA(AURKA)/TPX2 Product code 05-186 Full-length human AurA [1-403(end) amino acids of accession number NP_940835.1] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-AurA was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 1.7 / 2 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 6.1 IC50 at 1 mM ATP (nM) : n.a. ## AurB(AURKB)/INCENP Product code 05-102 Full-length human AurB [1-344(end) amino acids and M298T of accession number NP_004208.2] was co-expressed as N-terminal GST-fusion protein (66 kDa) with His-tagged INCENP(INBOX) [803-918(end) amino acids of accession number NP_001035784.1] using baculovirus expression system. GST-AurB was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 16 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 7.1 IC50 at 1 mM ATP (nM) : 62 ## AurC(AURKC) Product code 05-103 Full-length human AurC [1-275(end) amino acids of accession number NP_003151.2] was expressed as N-terminal GST-fusion protein (59 kDa) using baculovirus expression system. GST-AurC was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 24 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.1 IC50 at 1 mM ATP (nM) : 18 #### ΔΧΙ Product code 08-107 Human AXL, cytoplasmic domain [464-885(end) amino acids of accession number NP_001690.2] was expressed as N-terminal GST-fusion protein (74 kDa) using baculovirus expression system. GST-AXL was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 32 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.1 IC50 at 1 mM ATP (nM) : 7.9 **BLK** Product code 08-164 Full-length human BLK [1-505(end) amino acids of accession number NP_001706.2] was expressed as N-terminal GST-fusion protein (85 kDa) using baculovirus expression system. GST-BLK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 62 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.6 IC50 at 1 mM ATP (nM) : 17 **BMX** Product code 08-179 Full-length human BMX [1-675(end) amino acids of accession number NP_001712.1] was expressed as N-terminal GST-fusion protein (105 kDa) using baculovirus expression system. GST-BMX was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 75 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 10 IC50 at 1 mM ATP (nM) : 45 **BRK(PTK6)** Product code 08-165 Full-length human BRK [2-451(end) amino acids of accession number NP_005966.1] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-BRK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 250 / 250 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 260 IC50 at 1 mM ATP (nM) : 390 **BRSK1** Product code 02-115 Full-length human BRSK1 [1-778(end) amino acids of accession number NP_115806.1] was expressed as N-terminal GST-fusion protein (112 kDa) using baculovirus expression system. GST-BRSK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μ M) Km app / Bin : 30 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.27 IC50 at 1 mM ATP (nM) : 0.57 **BRSK2** Product code 02-116 Full-length human BRSK2 [1-674(end) amino acids of accession number ABA17261.1] was expressed as N-terminal GST-fusion protein (102 kDa) using baculovirus expression system. GST-BRSK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μ M) Km app / Bin : 31 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.31 IC50 at 1 mM ATP (nM) : n.a. **BTK** Product code 08-180 Full-length human BTK [2-659(end) amino acids of accession number NP_000052] was expressed as N-terminal GST-fusion protein (103 kDa) using baculovirus expression system. GST-BTK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 22 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 24 IC50 at 1 mM ATP (nM) : 93 BTK[C481S] Product code 08-547 Full-length human BTK [2-659(end) amino acids and C481S of accession number NP_000052] was expressed as N-terminal GST-fusion protein (103 kDa) using baculovirus expression system. GST-BTK[C481S] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 37 IC50 at 1 mM ATP (nM) : 170 **BUB1/BUB3** Product code 05-187 Full-length human BUB1 [1-1085 (end) amino acids of accession number NP_004327] was co-expressed as N-terminal GST-fusion protein (149 kDa) with DYKDDDDK tagged BUB3 [1-328 (end) amino acids of accession number NP_004716] using baculovirus expression system. GST-BUB1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : H2A peptide ATP (μ M) Km app / Bin : 2.9 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 300 IC50 at 1 mM ATP (nM) : n.a. CaMK1α(CAMK1) Product code 02-104 Full-length human CaMK1 α [1-370(end) amino acids of accession number NP_003647.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-CaMK1 α was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μM) Km app / Bin : 750 / 1000 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 16 IC50 at 1 mM ATP (nM) : 16 CaMK1δ(CAMK1D) Product code 02-106 Full-length human CaMK1 δ [1-357(end) amino acid of accession number NP_065130.1] was expressed as N-terminal GST-fusion protein (67 kDa) using baculovirus expression system. GST-CaMK1 δ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Synapsin peptide ATP (μ M) Km app / Bin : 11 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.5 IC50 at 1 mM ATP (nM) : n.a. #### CaMK2α(CAMK2A) Product code 02-109 Full-length human CaMK2 α [1-478(end) amino acids of accession number NP_741960.1] was expressed as N-terminal GST-fusion protein (81 kDa) using baculovirus expression system. GST-CaMK2 α was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 33 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.75 IC50 at 1 mM ATP (nM) : 3.2 #### CaMK2β(CAMK2B) Product code 02-110 Full-length human CaMK2 β [1-503 amino acids of accession number NP_742078.1] was expressed as N-terminal GST-fusion protein (83 kDa) using baculovirus expression system. GST-CaMK2 β was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 19 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.54 IC50 at 1 mM ATP (nM) : 5.8 ## CaMK2y(CAMK2G) Product code 02-112 Full-length human CaMK2γ[1-518(end) amino acids of accession number NP_751910.1] was expressed as N-terminal GST-fusion protein (85 kDa) using baculovirus expression system. GST-CaMK2γ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 23 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.39 IC50 at 1 mM ATP (nM) : 1.1 ## CaMK2δ(CAMK2D) Product code 02-111 Full-length human CaMK2δ [1-478 amino acids of accession number NP_742113.1] was expressed as N-terminal GST-fusion protein (81 kDa) using baculovirus expression system. GST-CaMK2δ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 6.3 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.26 IC50 at 1 mM ATP (nM) : 0.64 #### CaMK4 Product code 02-108 Full-length human CaMK4 [1-473(end) amino acids of accession number NP_001735.1] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-CaMK4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 20 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 140 IC50 at 1 mM ATP
(nM) : 1000 #### CDC7/ASK Product code 05-109 Full-length human CDC7 [1-574(end) amino acids of accession number NP_003494.1] was co-expressed as N-terminal GST-fusion protein (92 kDa) with Dbf4(ASK) [1-674(end) amino acids of accession number NP_006707.1] using baculovirus expression system. GST-CDC7 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MCM2 peptide ATP (μ M) Km app / Bin : 2.8 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 16 IC50 at 1 mM ATP (nM) : 1600 #### CDK1(CDC2)/CycB1 Product code 04-102 Full-length human CDK1 [1-297(end) amino acids of accession number NP_001777.1] was co-expressed as N-terminal GST-fusion protein (61 kDa) with CyclinB1 [1-433(end) amino acids of accession number NP_114172.1] using baculovirus expression system. GST-CDK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Histone H1 ATP (μ M) Km app / Bin : 34 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.3 IC50 at 1 mM ATP (nM) : 32 ## CDK2/CycA2 Product code 04-103 Full-length human CDK2 [1-298(end) amino acids of accession number NP_001789.2] was co-expressed as N-terminal GST-tagged protein (61 kDa) with GST-CyclinA2 [1-432(end) amino acids of accession number NP_001228.1] using baculovirus expression system. GST-CDK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Histone H1 ATP (μ M) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 7.1 ## CDK2/CycE1 Product code 04-165 Full-length human CDK2 [1-298(end) amino acids of accession number NP_001789.2] was co-expressed as N-terminal GST-tagged protein (61 kDa) with CyclinE1 [1-410(end) amino acids of accession number NP_001229.1] using baculovirus expression system. GST-CDK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Histone H1 ATP (μ M) Km app / Bin : 130 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.8 IC50 at 1 mM ATP (nM) : 10 ## CDK3/CycE1 Product code 04-104 Full-length human CDK3 [1-305(end) amino acids of accession number NP_001249.1] was co-expressed as N-terminal GST-fusion protein (62kDa) with CyclinE1 [1-410(end) amino acids of accession number NP_001229.1] using baculovirus expression system. GST-CDK3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Histone H1 ATP (µM) Km app / Bin : 1000 / 1000 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.4 IC50 at 1 mM ATP (nM) : 3.4 CDK4/CycD3 Product code 04-105 Full-length human CDK4 [1-303(end) amino acids of accession number NP_000066.1] was co-expressed as N-terminal GST-fusion protein (61 kDa) with human GST-CyclinD3 [1-292(end) amino acids and S259A of accession number NP_001751.1] using baculovirus expression system. GST-CDK4/CycD3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 200 / 200 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 13 IC50 at 1 mM ATP (nM) : 52 CDK5/p25 Product code 04-106 Full-length human CDK5 [1-292(end) amino acids of accession number NP_004926.1] was co-expressed as N-terminal GST-fusion protein (60 kDa) with p25 [99-307(end) amino acids of accession number NP_003876.1] using baculovirus expression system. GST-CDK5 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Histone H1 ATP (μ M) Km app / Bin : 10 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.5 IC50 at 1 mM ATP (nM) : 86 CDK6/CycD3 Product code 04-107 Full-length human CDK6 [1-326(end) amino acids of accession number NP_001250.1] was co-expressed as N-terminal GST-fusion protein (64 kDa) with human GST-CyclinD3 [1-292(end) amino acids and S259A of accession number NP_001751.1] using baculovirus expression system. GST-CDK6/CycD3 was purified by using glutathione sepharose chromatography and activated with His-CDK7/CycH/MAT1. Activated GST-CDK6/CycD3 was purified using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (µM) Km app / Bin : 330 / 300 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 58 IC50 at 1 mM ATP (nM) : 110 CDK7/CycH/MAT1 Product code 04-108 Full-length human CDK7 [1-346(end) amino acids of accession number NP_001790.1] was co-expressed as N-terminal GST-fusion protein (66 kDa) with CyclinH [1-323(end) amino acids of accession number NP_001230.1] and MAT1 [1-309(end) amino acids of accession number NP_002422.1] using baculovirus expression system. GST-CDK7 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CTD3 peptide ATP (μ M) Km app / Bin : 32 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 17 IC50 at 1 mM ATP (nM) : 120 CDK9/CycT1 Product code 04-110 Full-length human CDK9 [1-372(end) amino acids of accession number NP_001252.1] was co-expressed as N-terminal GST-fusion protein (70 kDa) with His-CyclinT1 [1-726(end) amino acids of accession number NP_001231.2] using baculovirus expression system. GST-CDK9 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CDK9 substrate ATP (μ M) Km app / Bin : 9.4 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 5.2 IC50 at 1 mM ATP (nM) : 130 #### CGK2(PRKG2) Product code 01-143 Full-length human CGK2 [1-762(end) amino acids of accession number NP_006250.1] was expressed as N-terminal GST-fusion protein (114 kDa) using baculovirus expression system. GST-CGK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 24 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.88 IC50 at 1 mM ATP (nM) : n.a. #### CHK1(CHEK1) Product code 02-117 Full-length human CHK1 [1-476(end) amino acids of accession number NP_001265.1] was expressed as N-terminal GST-fusion protein (81 kDa) using baculovirus expression system. GST-CHK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μ M) Km app / Bin : 50 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.24 IC50 at 1 mM ATP (nM) : 1.1 # CHK2(CHEK2) Product code 02-162 Full-length human CHK2 [1-543(end) amino acids of accession number NP_009125.1] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-CHK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (µM) Km app / Bin : 51 / 50 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 11 IC50 at 1 mM ATP (nM) : 25 ## CK1α(CSNK1A1) Product code 03-101 Full-length human CK1 α [1-337(end) amino acids of accession number NP_001883.4] was expressed as N-terminal GST-fusion protein (66 kDa) using baculovirus expression system. GST-CK1 α was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CKtide ATP (μ M) Km app / Bin : 4.1 / 5 Metal : Mg Reference compound : 5-lodotubercidin IC50 at ATP Bin (nM) : 150 IC50 at 1 mM ATP (nM) : >10000 # CK1y1(CSNK1G1) Product code 03-105 Full-length human CK1γ1 [1-422(end) amino acids of accession number NP_071331.2] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-CK1γ1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CKtide ATP (μ M) Km app / Bin : 6.3 / 5 Metal : Mg Reference compound : 5-lodotubercidin IC50 at ATP Bin (nM) : 1300 IC50 at 1 mM ATP (nM) : n.a. ### CK1y2(CSNK1G2) Product code 03-106 Full-length human CK1γ2 [1-415(end) amino acids of accession number NP_001310.3] was expressed as N-terminal GST-fusion protein (75 kDa) using baculovirus expression system. GST-CK1γ2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CKtide ATP (μ M) Km app / Bin : 10 / 10 Metal : Mg Reference compound : 5-lodotubercidin IC50 at ATP Bin (nM) : 510 IC50 at 1 mM ATP (nM) : n.a. #### CK1y3(CSNK1G3) Product code 03-107 Full-length human CK1 γ 3 [1-447(end) amino acids of accession number NP_004375.2] was expressed as N-terminal GST-fusion protein (78 kDa) using baculovirus expression system. GST-CK1 γ 3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CKtide ATP (μ M) Km app / Bin : 3.2 / 5 Metal : Mg Reference compound : 5-lodotubercidin IC50 at ATP Bin (nM) : 920 IC50 at 1 mM ATP (nM) : n.a. ## CK1δ(CSNK1D) Product code 03-103 Human CK1δ, catalytic domain [1-294 amino acids of accession number NP_001884.2] was expressed as N-terminal GST-fusion protein (61 kDa) using E. coli expression system. GST-CK1δ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CKtide ATP (μ M) Km app / Bin : 7.7 / 10 Metal : Mg Reference compound : 5-lodotubercidin IC50 at ATP Bin (nM) : 25 IC50 at 1 mM ATP (nM) : 570 ## CK1ε(CSNK1E) Product code 03-104 Human CK1 ϵ , catalytic domain [1-348 amino acids of accession number NP_001885.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-CK1 ϵ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay
Substrate : CKtide ATP (μ M) Km app / Bin : 16 / 25 Metal : Mg Reference compound : 5-lodotubercidin IC50 at ATP Bin (nM) : 300 IC50 at 1 mM ATP (nM) : 5800 ## CK2α1/β(CSNK2A1/B) Product code 05-184 Full-length human CK2 α 1 [1-391(end) amino acids of accession number NP_001886.1] was co-expressed as N-terminal GST-fusion protein (72 kDa) with human His-tagged CK2 β [1-215 amino acids of accession number NP_001311.3] using baculovirus expression system. GST-CK2 α 1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CK2tide IC50 at 1 mM ATP (nM): 4800 ## CK2α2/β(CSNK2A2/B) Product code 05-185 Full-length human CK2 α 2 [1-350(end) amino acids of accession number NP_001887.1] was co-expressed as N-terminal GST-fusion protein (68 kDa) with human His-tagged CK2 β [1-215 amino acids of accession number NP_001311.3] using baculovirus expression system. GST-CK2 α 2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CK2tide ATP (μ M) Km app / Bin : 2.1 / 5 Metal : Mg Reference compound : TBB IC50 at ATP Bin (nM) : 50 IC50 at 1 mM ATP (nM) : n.a. #### CLK₁ Product code 04-126 Human CLK1, catalytic domain [129-484(end) amino acids of accession number NP_004062.2] was expressed as N-terminal GST-fusion protein (69 kDa) using baculovirus expression system. GST-CLK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μM) Km app / Bin : 11 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 9.6 IC50 at 1 mM ATP (nM) : 60 #### CLK₂ Product code 04-127 Full-length human CLK2 [1-499(end) amino acids of accession number AAH53603.1] was expressed as N-terminal GST-fusion protein (87 kDa) using baculovirus expression system. GST-CLK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (µM) Km app / Bin : 140 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 4.6 IC50 at 1 mM ATP (nM) : 28 #### CLK3 Product code 04-128 Full-length human CLK3 [1-490(end) amino acids of accession number AAH02555.1] was expressed as N-terminal GST-fusion protein (86 kDa) using baculovirus expression system. GST-CLK3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 75 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 820 IC50 at 1 mM ATP (nM): n.a. #### CRIK(CIT) Product code 01-104 Human citron kinase (CRIK), catalytic domain [1-449 amino acids of accession number NP_009105.1] was expressed as N-terminal GST fusion protein (77 kDa) using baculovirus expression system. GST-CRIK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Histone H3 peptide ATP (μ M) Km app / Bin : 7.8 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 31 IC50 at 1 mM ATP (nM) : n.a. **CSK** Product code 08-111 Full-length human CSK [1-450(end) amino acids of accession number NP_004374.1] was expressed as N-terminal GST-fusion protein (78 kDa) using baculovirus expression system. GST-CSK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 4.8 / 5 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 53 IC50 at 1 mM ATP (nM) : 1500 DAPK1 Product code 02-134 Human DAPK1, catalytic domain [1-289 amino acids of accession number NP_004929.1] was expressed as N-terminal GST-fusion protein (60 kDa) using baculovirus expression system. GST-DAPK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DAPK1tide ATP (μ M) Km app / Bin : 1.1 / 1 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.9 IC50 at 1 mM ATP (nM) : 490 DCAMKL2 Product code 02-140 Full-length human DCAMKL2 [1-695(end) amino acids of accession number NP_689832.1] was expressed as N-terminal GST-fusion protein (103 kDa) using baculovirus expression system. GST-DCAMKL2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μM) Km app / Bin : 120 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 22 IC50 at 1 mM ATP (nM) : n.a. DDR₁ Product code 08-113 Human DDR1, cytoplasmic domain [444-876(end) amino acids of accession number NP_001945.3] was expressed as N-terminal GST-fusion protein (75 kDa) using baculovirus expression system. GST-DDR1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRS1 ATP (μ M) Km app / Bin : 94 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 4.0 IC50 at 1 mM ATP (nM) : 3.1 DDR2 Product code 08-114 Human DDR2, cytoplasmic domain [422-855(end) amino acids of accession number NP_006173.2] was expressed as N-terminal GST-fusion protein (77 kDa) using baculovirus expression system. GST-DDR2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRS1 ATP (μ M) Km app / Bin : 38 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.2 IC50 at 1 mM ATP (nM) : 0.77 DGKα(DGKA) Product code 12-401-20N Full-length human DGKα [1-735(end) amino acids of accession number NP_958852.1] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (87 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : Diacylglycerol ATP (µM) Km app / Bin : 130 / 100 Metal : Mg Reference compound : Non-disclosable IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): DGKβ(DGKB) Product code 12-402-20N Full-length human DGKβ [1-803(end) amino acids of accession number NP 001337638.1] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (95 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose and activated with ATP. Activated protein was purified by using gel filtration. : ADP-Glo Assay platform Substrate : Diacylglycerol ATP (µM) Km app / Bin : 61 / 50 : Ma Reference compound : Non-disclosable IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): Metal DGKy(DGKG) Product code 12-403-20N Full-length human DGKy [1-791(end) amino acids and T142S and R316K of accession number NP_001337.2] was expressed as Nterminal DYKDDDDK tagged, biotinylated protein (94 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. : ADP-Glo Assay platform Substrate : Diacylglycerol ATP (µM) Km app / Bin : 55 / 50 Metal : Ma Reference compound : Non-disclosable IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): DGKδ(DGKD) Product code 12-404-20N Catalytic domain of human DGKo [1-1141 amino acids of accession number NP 690618.2] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (131 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assav platform : ADP-Glo Substrate : Diacylglycerol ATP (µM) Km app / Bin : 120 / 100 Metal : Ma Reference compound : Non-disclosable IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): DGKε(DGKE) Product code 12-415-20N Truncated human DGKε [48-567(end) amino acids of accession number NP_003638.1] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (63 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. : ADP-Glo Assay platform Substrate : Diacylglycerol ATP (µM) Km app / Bin : 120 / 100 Metal : Ma Reference compound : Non-disclosable IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): DGKζ(DGKZ) Product code 12-410-20N Full-length human DGK ζ [1-929(end) amino acids of accession number NP_003637.2] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (109 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : Diacylglycerol ATP (μM) Km app / Bin : 25 / 25 Metal : Mg Reference compound : Non-disclosable IC50 at ATP Bin (nM) : IC50 at 1 mM ATP (nM) : DGKη(DGKH) Product code 12-406-20N Catalytic domain of human DGK η [1-1147 amino acids of accession number NP_821077.1] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (131 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : Diacylglycerol ATP (μM) Km app / Bin : 24 / 25 Metal : Mg Reference compound : Non-disclosable IC50 at ATP Bin (nM) : IC50 at 1 mM ATP (nM) : DGKθ(DGKQ) Product code 12-409-20N Full-length human DGK θ [1-942(end) amino acids of accession number NP_001338.2] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (106 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : Diacylglycerol ATP (μ M) Km app / Bin : 37 / 50 Metal : Mg Reference compound : Non-disclosable IC50 at ATP Bin (nM) : IC50 at 1 mM ATP (nM) : DGK₁(DGKI) Product code 12-407-20N Full-length human DGKI [1-1065(end) amino acids of accession number NP_004708.1] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (122 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : Diacylglycerol ATP (μ M) Km app / Bin : 34 / 50 Metal : Mg Reference compound : Non-disclosable IC50 at ATP Bin (nM) : IC50 at 1 mM ATP (nM) : DGKk(DGKK) Product code 12-408-20N Full-length human DGKκ [1-1271(end) amino acids and D1118N of
accession number NP_001013764.1] was expressed as N-terminal DYKDDDDK tagged, biotinylated protein (146 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : Diacylglycerol ATP (μ M) Km app / Bin : 17 / 25 Metal : Mg Reference compound : Non-disclosable IC50 at ATP Bin (nM) : IC50 at 1 mM ATP (nM) : DYRK1A Product code 04-130 Full-length human DYRK1A [1-763(end) amino acids of accession number NP_001387.2] was expressed as N-terminal GST-fusion protein (112 kDa) using baculovirus expression system. GST-DYRK1A was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 16 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 7.8 IC50 at 1 mM ATP (nM) : 120 DYRK1B Product code 04-131 Full-length human DYRK1B [1-629(end) amino acids of accession number NP_004705.1] was expressed as N-terminal GST-fusion protein (96 kDa) using baculovirus expression system. GST-DYRK1B was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 59 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.2 IC50 at 1 mM ATP (nM) : 32 DYRK2 Product code 04-132 Full-length human DYRK2 [1-528(end) amino acids of accession number NP_003574.1] was expressed as N-terminal GST-fusion protein (87 kDa) using baculovirus expression system. GST-DYRK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (µM) Km app / Bin : 7.7 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 130 IC50 at 1 mM ATP (nM) : 6300 DYRK3 Product code 04-133 Full-length human DYRK3 [1-588(end) amino acids of accession number NP_003573.2] was expressed as N-terminal GST-fusion protein (93 kDa) using baculovirus expression system. GST-DYRK3 was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 6.8 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 17 IC50 at 1 mM ATP (nM) : 1200 EEF2K Product code 10-113 Full-length human EEF2K [1-725(end) amino acids of accession number NP_037434.1] was expressed as N-terminal GST-fusion protein (109 kDa) using E. coli expression system. GST-EEF2K was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : EEF2Ktide ATP (μM) Km app / Bin : 12 / 10 Metal : Mg Reference compound : A-484954 IC50 at ATP Bin (nM) : 330 IC50 at 1 mM ATP (nM) : n.a. #### **EGFR** Product code 08-115 Human EGFR, cytoplasmic domain [669-1210(end) amino acids of accession number NP_005219.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-EGFR was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 2.7 / 5 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 53 IC50 at 1 mM ATP (nM) : 7700 #### EGFR[C797S/L858R] Product code 08-563 Human EGFR, cytoplasmic domain [669-1210(end) amino acids and C797S/L858R of accession number NP_005219.2] was expressed as N-terminal GST-fusion protein (89kDa) using baculovirus expression system. GST-EGFR[C797S/L858R] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 4.1 / 5 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 8.8 IC50 at 1 mM ATP (nM) : 270 ## EGFR[d746-750] Product code 08-527 Human EGFR, cytoplasmic domain [669-745, 751-1210(end) amino acids of accession number NP_005219.2] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-EGFR[d746-750aa] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide $\begin{array}{lll} \text{ATP (μM$) Km app / Bin} & : & 19 \ / \ 25 \\ \text{Metal} & : & \text{Mg+Mn} \end{array}$ Reference compound : Staurosporine IC50 at ATP Bin (nM) : 13 IC50 at 1 mM ATP (nM) : 93 #### EGFR[d746-750/C797S] Product code 08-564 Human EGFR, cytoplasmic domain [669-745, 751-1210(end) amino acids and C797S of accession number NP_005219.2] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-EGFR[d746-750aa/C797S] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μM) Km app / Bin : 8.2 / 10 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 8.0 IC50 at 1 mM ATP (nM) : 130 # EGFR[d746-750/T790M] Product code 08-528 Human EGFR, cytoplasmic domain [669-745, 751-1210(end) amino acids and T790M of accession number NP_005219.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-EGFR [d746-750aa/T790M] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 5.4 / 5 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.52 IC50 at 1 mM ATP (nM) : 9.7 #### EGFR[d746-750/T790M/C797S] Product code 08-565 Human EGFR, cytoplasmic domain [669-745, 751-1210(end) amino acids and T790M/C797S of accession number NP 005219.2] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-EGFR[d746-750aa/T790M/C797S] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (µM) Km app / Bin : 1.8 / 2 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.84 IC50 at 1 mM ATP (nM): 14 #### EGFR[D770 N771insNPG] Product code 08-553 Human EGFR, cytoplasmic domain [669-1210(end) amino acids and D770 N771insNPG of accession number NP 005219.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-EGFR[D770 N771insNPG] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 2.3 / 5 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 18 IC50 at 1 mM ATP (nM): 930 ## EGFR[L858R] Product code 08-502 Human EGFR, cytoplasmic domain [669-1210(end) amino acids and L858R of accession number NP 005219.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-EGFR[L858R] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (µM) Km app / Bin : 9.8 / 10 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): 360 ## EGFR[L861Q] Product code 08-513 Human EGFR, cytoplasmic domain [669-1210(end) amino acids and L861Q of accession number NP 005219.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-EGFR[L861Q] was purified by using glutathione sepharose chromatography. Assav platform : Mobility Shift Assay Substrate : Srctide ATP (µM) Km app / Bin : 7.5 / 10 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 68 IC50 at 1 mM ATP (nM): 2200 ## EGFR[T790M] Product code 08-194 Human EGFR, cytoplasmic domain [669-1210(end) amino acids and T790M of accession number NP_005219.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-EGFR[T790M] was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (µM) Km app / Bin : 0.9 / 1 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.8 IC50 at 1 mM ATP (nM): 190 ## EGFR[T790M/C797S/L858R] Product code 08-559 Human EGFR, cytoplasmic domain [669-1210(end) amino acids and T790M/C797S/L858R of accession number NP_005219.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-EGFR[T790M/C797S/L858R] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 0.85 / n.a. Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : n.a. IC50 at 1 mM ATP (nM) : 37 #### EGFR[T790M/L858R] Product code 08-510 Human EGFR, cytoplasmic domain [669-1210(end) amino acids and T790M/L858R of accession number NP_005219.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-EGFR[T790M/L858R] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 1.9 / 2 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 56 #### EPHA1 Product code 08-119 Human EPHA1, cytoplasmic domain [586-976(end) amino acids of accession number NP_005223.3] was expressed as N-terminal GST-fusion protein (71 kDa) using baculovirus expression system. GST-EPHA1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 22 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 20 IC50 at 1 mM ATP (nM) : 340 #### EPHA2 Product code 08-121 Human EPHA2, cytoplasmic domain [572-976(end) amino acids of accession number NP_004422.2] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-EPHA2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 67 / 75 Metal : Mg Reference
compound : Staurosporine IC50 at ATP Bin (nM) : 160 IC50 at 1 mM ATP (nM) : 530 #### EPHA3 Product code 08-122 Human EPHA3, cytoplasmic domain [579-983(end) amino acids of accession number NP_005224.2] was expressed as N-terminal GST-fusion protein (72 kDa) using baculovirus expression system. GST-EPHA3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (µM) Km app / Bin : 170 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 37 IC50 at 1 mM ATP (nM) : 76 EPHA4 Product code 08-123 Human EPHA4, cytoplasmic domain [586-986(end) amino acids of accession number NP_004429.1] was expressed as N-terminal GST-fusion protein (72 kDa) using baculovirus expression system. GST-EPHA4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 52 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 50 IC50 at 1 mM ATP (nM) : 330 EPHA5 Product code 08-124 Human EPHA5, catalytic domain [662-948 amino acids of accession number NP_004430.3] was expressed as N-terminal GST-fusion protein (59 kDa) using baculovirus expression system. GST-EPHA5 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 56 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 34 IC50 at 1 mM ATP (nM) : 220 EPHA6 Product code 08-125 Human EPHA6, cytoplasmic domain [683-1130(end) amino acids of accession number NP_001073917.2] was expressed as N-terminal GST-fusion protein (77 kDa) using baculovirus expression system. GST-EPHA6 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 27 / 25 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 17 IC50 at 1 mM ATP (nM) : 60 EPHA7 Product code 08-126 Human EPHA7, cytoplasmic domain [595-998(end) amino acids of accession number NP_004431.1] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-EPHA7 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 58 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 48 IC50 at 1 mM ATP (nM) : 480 EPHA8 Product code 08-127 Human EPHA8, catalytic domain [571-924 amino acids of accession number NP_065387.1] was expressed as N-terminal GST-fusion protein (67 kDa) using baculovirus expression system. GST-EPHA8 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 69 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 61 IC50 at 1 mM ATP (nM) : 240 EPHB1 Product code 08-128 Human EPHB1, cytoplasmic domain [578-984(end) amino acids of accession number NP_004432.1] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-EPHB1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 29 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 53 IC50 at 1 mM ATP (nM) : 760 EPHB2 Product code 08-129 Human EPHB2, cytoplasmic domain [581-987(end) amino acids of accession number NP_004433.2] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-EPHB2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μM) Km app / Bin : 86 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 73 IC50 at 1 mM ATP (nM) : 400 EPHB3 Product code 08-130 Human EPHB3, cytoplasmic domain [596-998(end) amino acids of accession number NP_004434.2] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-EPHB3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 49 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2000 IC50 at 1 mM ATP (nM) : >10000 EPHB4 Product code 08-131 Human EPHB4, cytoplasmic domain [577-987(end) amino acids of accession number NP_004435.3] was expressed as N-terminal GST-protein (73 kDa) using baculovirus expression system. GST-EPHB4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 56 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 230 IC50 at 1 mM ATP (nM) : 1500 Erk1(MAPK3) Product code 04-142 Full-length human Erk1 [1-379(end) amino acids of accession number NP_002737.1] was expressed as N-terminal GST-fusion protein (70 kDa) using E.coli expression system. GST-Erk1 was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K1. Activated GST-Erk1 was purified using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (µM) Km app / Bin : 34 / 50 Metal : Mg Reference compound : K252a IC50 at ATP Bin (nM) : 37 IC50 at 1 mM ATP (nM) : 400 #### Erk2(MAPK1) Product code 04-143 Full-length human Erk2 [1-360(end) amino acids of accession number NP_002736.3] was expressed as N-terminal GST-fusion protein (69 kDa) using E.coli expression system. GST-Erk2 was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K1. Activated GST-Erk2 was purified using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide IC50 at ATP Bin (nM) : 21 IC50 at 1 mM ATP (nM) : 180 #### Erk5(MAPK7) Product code 04-146 Human Erk5, catalytic domain [1-398 amino acids of accession number NP_002740.2] was expressed as N-terminal GST-fusion protein (72 kDa) using E. coli expression system. GST-Erk5 was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K5. Activated GST-Erk5 was purified by using Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : EGFR-derived peptide ATP (μ M) Km app / Bin : 450 / 1000 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 280 IC50 at 1 mM ATP (nM) : 280 ## FAK(PTK2) Product code 08-137 Truncated human FAK[376-1052(end) amino acids of accession number NP_722560.1] was expressed as N-terminal GST-fusion protein (103 kDa) using baculovirus expression system. GST-FAK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 25 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 47 IC50 at 1 mM ATP (nM) : 230 **FER** Product code 08-139 Full-length human FER [1-822(end) amino acids of accession number NP_005237.1] was expressed as N-terminal GST-fusion protein (122 kDa) using baculovirus expression system. GST-FER was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μM) Km app / Bin : 26 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 12 **FFS** Product code 08-140 Full-length human FES [1-413, 416-822(end) amino acids of accession number NP_001996.1] was expressed as N-terminal GST-fusion protein (120 kDa) using baculovirus expression system. GST-FES was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 43 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.9 IC50 at 1 mM ATP (nM) : 25 FGFR1 Product code 08-133 Human FGFR1, cytoplasmic domain [398-822(end) amino acids of accession number NP_075598.2] was expressed as N-terminal GST-fusion protein (75 kDa) using baculovirus expression system. GST-FGFR1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (µM) Km app / Bin : 89 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.3 IC50 at 1 mM ATP (nM) : 12 **FGFR1[V561M]** Product code 08-536 Human FGFR1, cytoplasmic domain [398-822(end) amino acids and V561M of accession number NP_075598.2] was expressed as N-terminal GST-fusion protein (75 kDa) using baculovirus expression system. GST-FGFR1[V561M] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 33 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.14 IC50 at 1 mM ATP (nM) : 1.3 FGFR2 Product code 08-134 Human FGFR2, cytoplasmic domain [399-821(end) amino acids of accession number NP_000132.3] was expressed as N-terminal GST-fusion protein (75 kDa) using baculovirus expression system. GST-FGFR2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 66 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.4 IC50 at 1 mM ATP (nM) : 5.4 FGFR2[V564I] Product code 08-546 Human FGFR2, cytoplasmic domain [399-821(end) amino acids and V564I of accession number NP_000132.3] was expressed as N-terminal GST-fusion protein (75 kDa) using baculovirus expression system. GST-FGFR2[V564I] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 21 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.0 IC50 at 1 mM ATP (nM) : 47 FGFR3 Product code 08-135 Human FGFR3, cytoplasmic domain [436-806(end) amino acids of
accession number NP_000133.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-FGFR3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 43 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.6 IC50 at 1 mM ATP (nM) : 15 ## **FGFR3[K650E]** Product code 08-501 Human FGFR3, cytoplasmic domain [436-806(end) amino acids and K650E of accession number NP_000133.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-FGFR3[K650E] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 41 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.2 IC50 at 1 mM ATP (nM) : 14 #### **FGFR3[K650M]** Product code 08-199 Human FGFR3, cytoplasmic domain [436-806(end) amino acids and K650M of accession number NP_000133.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-FGFR3[K650M] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 17 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.68 IC50 at 1 mM ATP (nM) : 17 ## **FGFR3[V555L]** Product code 08-548 Human FGFR3, cytoplasmic domain [436-806(end) amino acids and V555L of accession number NP_000133.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-FGFR3[V555L] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 29 / 25 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.49 IC50 at 1 mM ATP (nM) : 9.4 ## FGFR3[V555M] Product code 08-543 Human FGFR3, cytoplasmic domain [436-806(end) amino acids and V555M of accession number NP_000133.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-FGFR3[V555M] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 37 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.21 IC50 at 1 mM ATP (nM) : 1.8 #### FGFR4 Product code 08-136 Human FGFR4, cytoplasmic domain [460-802(end) amino acids of accession number NP_002002.3] was expressed as N-terminal GST-fusion protein (65 kDa) using baculovirus expression system. GST-FGFR4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 230 / 250 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 43 IC50 at 1 mM ATP (nM) : 120 ### **FGFR4[N535K]** Product code 08-524 Human FGFR4, cytoplasmic domain [460-802(end) amino acids and N535K of accession number NP_002002.3] was expressed as N-terminal GST-fusion protein (65 kDa) using baculovirus expression system. GST-FGFR4[N535K] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 30 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 160 IC50 at 1 mM ATP (nM) : 1200 #### FGFR4[V550E] Product code 08-525 Human FGFR4, cytoplasmic domain [460-802(end) amino acids and V550E of accession number NP_002002.3] was expressed as N-terminal GST-fusion protein (65 kDa) using baculovirus expression system. GST-FGFR4[V550E] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 210 / 200 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 370 IC50 at 1 mM ATP (nM) : 1300 ## FGFR4[V550L] Product code 08-526 Human FGFR4, cytoplasmic domain [460-802(end) amino acids and V550L of accession number NP_002002.3] was expressed as N-terminal GST-fusion protein (65 kDa) using baculovirus expression system. GST-FGFR4[V550L] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μM) Km app / Bin : 160 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 10 IC50 at 1 mM ATP (nM) : 44 #### **FGR** Product code 08-166 Full-length human FGR [1-529(end) amino acids of accession number NP_005239.1] was expressed as N-terminal GST-fusion protein (86 kDa) using baculovirus expression system. GST-FGR was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 34 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.3 IC50 at 1 mM ATP (nM) : 16 #### FLT1 Product code 08-189 Human FLT1, cytoplasmic domain [781-1338(end) amino acids of accession number NP_002010.1] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-FLT1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (µM) Km app / Bin : 140 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.2 IC50 at 1 mM ATP (nM) : 6.8 FLT3 Product code 08-154 Human FLT3, cytoplasmic domain [564-993(end) amino acids of accession number NP_004110.2] was expressed as N-terminal GST-fusion protein (77 kDa) using baculovirus expression system. GST-FLT3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 94 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.20 IC50 at 1 mM ATP (nM) : 0.34 FLT4 Product code 08-190 Human FLT4, cytoplasmic domain [798-1298(end) amino acids of accession number NP_002011.1] was expressed as N-terminal GST-fusion protein (83 kDa) using baculovirus expression system. GST-FLT4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 72 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.66 IC50 at 1 mM ATP (nM) : 2.4 FMS(CSF1R) Product code 08-155 Human FMS, cytoplasmic domain [538-972(end) amino acids of accession number NP_005202.2] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-FMS was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 26 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.26 IC50 at 1 mM ATP (nM) : 0.70 **FRK** Product code 08-167 Human FRK, catalytic domain [223-505(end) amino acids of accession number NP_002022.1] was expressed as N-terminal GST-fusion protein (60 kDa) using baculovirus expression system. GST-FRK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 62 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.4 IC50 at 1 mM ATP (nM) : 40 FYN[isoform a] Product code 08-168 Full-length human FYN [isoform a] [1-537(end) amino acids of accession number NP_002028.1] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-FYN [isoform a] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 36 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.9 IC50 at 1 mM ATP (nM) : 24 ## FYN[isoform b] Product code 08-531 Full-length human FYN [isoform b] [1-534(end) amino acids of accession number NP_694592.1] was expressed as N-terminal GST-fusion protein (87 kDa) using baculovirus expression system. GST-FYN [isoform b] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 20 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.8 IC50 at 1 mM ATP (nM) : 42 #### GSK3α(GSK3A) Product code 04-140 Full-length human GSK3 α [1-483(end) amino acids of accession number NP_063937.2] was expressed as N-terminal GST-fusion protein (78 kDa) using baculovirus expression system. GST-GSK3 α was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CREBtide-p ATP (μ M) Km app / Bin : 12 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 15 IC50 at 1 mM ATP (nM) : 400 # GSK3β(GSK3B) Product code 04-141 Full-length human GSK3 β [1-420(end) amino acids of accession number NP_001139628.1] was expressed as N-terminal GST-fusion protein (74 kDa) using baculovirus expression system. GST-GSK3 β was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CREBtide-p ATP (μ M) Km app / Bin : 9.1 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 9.2 IC50 at 1 mM ATP (nM) : 240 ## Haspin(GSG2) Product code 05-111 Full-length human Haspin [1-798(end) amino acids of accession number NP_114171.2] was expressed as N-terminal GST-fusion protein (116 kDa) using baculovirus expression system. GST-Haspin was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Histone H3 peptide ATP (µM) Km app / Bin : 140 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 5.8 IC50 at 1 mM ATP (nM) : n.a. #### **HCK** Product code 08-169 Truncated human HCK [25-526(end) amino acids of accession number NP_002101.2] was expressed as N-terminal GST-fusion protein (84 kDa) using baculovirus expression system. GST-HCK was purified by using glutathione
sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 11 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.1 IC50 at 1 mM ATP (nM) : 22 #### HER2(ERBB2) Product code 08-016 Human HER2, cytoplasmic domain [676-1255(end) amino acids of accession number NP_004439.1] was expressed as N-terminal Histagged protein (67 kDa) using baculovirus expression system. Histagged HER2 was purified by using Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 3.5 / 5 Metal : Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 90 IC50 at 1 mM ATP (nM) : >10000 #### HER4(ERBB4) Product code 08-118 Human HER4, cytoplasmic domain [676-1308(end) amino acids of accession number NP_005226.1] was expressed as N-terminal GST-fusion protein (99 kDa) using baculovirus expression system. GST-HER4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 34 IC50 at 1 mM ATP (nM) : 1000 #### HGK(MAP4K4) Product code 07-137 Human HGK, catalytic domain [1-328 amino acids of accession number NP_004825.2] was expressed as N-terminal GST-fusion protein (64 kDa) using baculovirus expression system. GST-HGK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Moesin-derived peptide ATP (μ M) Km app / Bin : 9.4 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 23 #### HIPK1 Product code 04-135 Human HIPK1, catalytic domain [158-555 amino acids of accession number NP_689909.2] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-HIPK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 4.4 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 570 IC50 at 1 mM ATP (nM) : n.a. #### HIPK2 Product code 04-136 Full-length human HIPK2 [1-1198(end) amino acids of accession number NP_073577.3] was expressed as N-terminal GST-fusion protein (158 kDa) using baculovirus expression system. GST-HIPK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 5.9 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 170 IC50 at 1 mM ATP (nM) : n.a. HIPK3 Product code 04-137 Human HIPK3, catalytic domain [161-562 amino acids of accession number NP_005725.3] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-HIPK3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 7.3 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 120 IC50 at 1 mM ATP (nM) : >10000 HIPK4 Product code 04-138 Full-length human HIPK4 [1-616(end) amino acids of accession number NP_653286.2] was expressed as N-terminal GST-fusion protein (96 kDa) using baculovirus expression system. GST-HIPK4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 7 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 71 IC50 at 1 mM ATP (nM) : >10000 HPK1(MAP4K1) Product code 07-410 Human HPK1, catalytic domain [1-346 amino acids of accession number NP_009112.1] was expressed as N-terminal DYKDDDDK tagged protein (41 kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : Mobility Shift Assay Substrate : S6K2 peptide **IGF1R** Product code 08-141 Human IGF1R, cytoplasmic domain [959-1367(end) amino acids of accession number NP_000866.1] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-IGF1R was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRS1 IC50 at 1 mM ATP (nM): n.a. ATP (μ M) Km app / Bin : 63 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 40 IC50 at 1 mM ATP (nM) : 150 IKKα(CHUK) Product code 05-112 Full-length human IKK α [1-745(end) amino acids of accession number NP_001269.3] was expressed as N-terminal GST-fusion protein (111 kDa) using baculovirus expression system. GST-IKK α was purified by using glutathione sepharose chromatography. Assay platform : IMAP Substrate : IκBα peptide ATP (μ M) Km app / Bin : 41 / 40 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 310 IC50 at 1 mM ATP (nM) : n.a. ### IKKβ(IKBKB) Product code 05-084 Truncated human IKK β [1-662 amino acids of accession number NP_001547.1] was expressed as N-terminal His-tagged protein (77 kDa) using baculovirus expression system. His-tagged IKK β was purified by using Ni-NTA affinity chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : Modified $I\kappa B\alpha$ -derived peptide ATP (μ M) Km app / Bin : 16 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 410 IC50 at 1 mM ATP (nM) : >10000 #### IKKε(IKBKE) Product code 05-114 Full-length human IKKε [1-716(end) amino acids of accession number NP_054721.1] was expressed as N-terminal GST-fusion protein (108 kDa) using baculovirus expression system. GST-IKKε was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IκBα peptide ATP (μ M) Km app / Bin : 9.5 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.79 IC50 at 1 mM ATP (nM) : n.a. #### **INSR** Product code 08-142 Human INSR, catalytic domain [1005-1310 amino acids of accession number NP_000199.1] was expressed as N-terminal GST-fusion protein (62 kDa) using baculovirus expression system. GST-INSR was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRS1 ATP (μ M) Km app / Bin : 58 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 12 IC50 at 1 mM ATP (nM) : 70 #### **IRAK1** Product code 09-101 Truncated human IRAK1 [194-712(end) amino acids of accession number NP_001560.2] was expressed as N-terminal GST-fusion protein (83 kDa) using baculovirus expression system. GST-IRAK1 was purified by using glutathione sepharose chromatography. Assay platform : IMAP Substrate : SRPKtide ATP (µM) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 54 IC50 at 1 mM ATP (nM) : n.a. #### **IRAK4** Product code 09-145 Full-length human IRAK4 [1-460(end) amino acids of accession number NP_057207.2] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-IRAK4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRAK1 peptide ATP (μ M) Km app / Bin : 920 / 1000 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 11 IC50 at 1 mM ATP (nM) : 11 IRR(INSRR) Product code 08-143 Human IRR, cytoplasmic domain [953-1297(end) amino acids of accession number NP_055030.1] was expressed as N-terminal GST-fusion protein (66 kDa) using baculovirus expression system. GST-IRR was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRS1 ATP (μ M) Km app / Bin : 64 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 15 IC50 at 1 mM ATP (nM) : 98 **ITK** Product code 08-181 Full-length human ITK [2-620(end) amino acids of accession number NP_005537.3] was expressed as N-terminal GST-fusion protein (99 kDa) using baculovirus expression system. GST-ITK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μM) Km app / Bin : 6.1 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.2 IC50 at 1 mM ATP (nM) : 200 JAK1 Product code 08-144 Human JAK1, catalytic domain [850-1154(end) amino acids of accession number NP_002218.2] was expressed as N-terminal GST-fusion protein (62 kDa) using baculovirus expression system. GST-JAK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : JAK1 substrate peptide ATP (μ M) Km app / Bin : 68 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.71 IC50 at 1 mM ATP (nM) : 10 JAK2 Product code 08-045 Human JAK2, catalytic domain [826-1132(end) amino acids of accession number NP_004963.1] was expressed as N-terminal Histagged protein (39 kDa) using baculovirus expression system. Histagged JAK2 was purified by using Ni-NTA affinity chromatography and gel filtration chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 13 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.34 IC50 at 1 mM ATP (nM) : 6.0 JAK3 Product code 08-046 Human JAK3, catalytic domain [795-1124(end) amino acids of accession number NP_000206.2] was expressed as N-terminal Histagged protein (41 kDa) using baculovirus expression system. Histagged JAK3 was purified by using Ni-NTA affinity chromatography and gel filtration chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 3.5 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.20 IC50 at 1 mM ATP (nM) : 12 ### JNK1(MAPK8) Product code 04-163 Human JNK1, catalytic domain [2-364 amino acids of accession number NP_620634.1] was expressed as N-terminal GST-fusion protein (69 kDa) using E. coli
expression system. GST-JNK1 was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K4 and MAP2K7. Activated GST-JNK1 was purified using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (μ M) Km app / Bin : 29 / 100 Metal : Mg Reference compound : K252a IC50 at ATP Bin (nM) : 99 IC50 at 1 mM ATP (nM) : 770 ### JNK2(MAPK9) Product code 04-164 Human JNK2, catalytic domain [1-364 amino acids of accession number NP_002743.3] was expressed as N-terminal GST-fusion protein (69 kDa) using E. coli expression system. GST-JNK2 was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K4 and MAP2K7. Activated GST-JNK2 was purified using Ni-NTA chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (μ M) Km app / Bin : 21 / 50 Metal : Mg Reference compound : K252a IC50 at ATP Bin (nM) : 110 IC50 at 1 mM ATP (nM) : 1600 # JNK3(MAPK10) Product code 04-150 Full-length human JNK3 [1-426(end) amino acids of accession number NP_620446.1] was expressed as N-terminal GST-fusion protein (75 kDa) using E.coli expression system. GST-JNK3 was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K4 and MAP2K7. Activated GST-JNK3 was purified using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (μM) Km app / Bin : 6 / 25 Metal : Mg Reference compound : K252a IC50 at ATP Bin (nM) : 26 IC50 at 1 mM ATP (nM) : 730 #### **KDR** Product code 08-191 Human KDR, cytoplasmic domain [790-1356(end) amino acids of accession number NP_002244.1] was expressed as N-terminal GST-fusion protein (90 kDa) using baculovirus expression system. GST-KDR was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 74 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.1 IC50 at 1 mM ATP (nM) : 13 #### **KIT** Product code 08-156 Human KIT, cytoplasmic domain [544-976(end) amino acids of accession number NP_000213.1] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-KIT was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 370 / 400 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.2 IC50 at 1 mM ATP (nM) : 2.0 ## **KIT[D816E]** Product code 08-541 Human KIT, cytoplasmic domain [544-976(end) amino acids and D816E of accession number NP_000213.1] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-KIT[D816E] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 40 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.7 IC50 at 1 mM ATP (nM) : 1.3 ## **KIT[D816V]** Product code 08-505 Human KIT, cytoplasmic domain [544-976(end) amino acids and D816V of accession number NP_000213.1] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-KIT[D816V] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 14 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.18 IC50 at 1 mM ATP (nM) : 2.8 ## **KIT[D816Y]** Product code 08-534 Human KIT, cytoplasmic domain [544-976(end) amino acids and D816Y of accession number NP_000213.1] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-KIT[D816Y] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 22 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.27 IC50 at 1 mM ATP (nM) : 2.1 # KIT[T670I] Product code 08-195 Human KIT, cytoplasmic domain [544-976(end) amino acids and T670I of accession number NP_000213.1] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-KIT[T670I] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 100 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.80 IC50 at 1 mM ATP (nM) : 3.4 # KIT[V560G] Product code 08-504 Human KIT, cytoplasmic domain [544-976(end) amino acids and V560G of accession number NP_000213.1] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-KIT[V560G] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 110 / 250 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.2 IC50 at 1 mM ATP (nM) : 1.6 ## KIT[V654A] Product code 08-511 Human KIT, cytoplasmic domain [544-976(end) amino acids and V654A of accession number NP_000213.1] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-KIT[V654A] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 220 / 250 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 4.5 IC50 at 1 mM ATP (nM) : 8.2 ### LATS1/MOBKL1A Product code 01-523 Human LATS1, catalytic domain [589-1130(end) amino acids of accession number NP_004681.1] was co-expressed as N-terminal GST-fusion protein (90 kDa) with human His-tagged MOBKL1A [1-216(end) amino acids of accession number NP_775739.1] and human BTN-MST2 [1-491(end) amino acids of accession number NP_006272.2] using baculovirus expression system. GST-LATS1/MOBKL1A was purified by using glutathione sepharose chromatography and DYKDDDDK tag antibody agarose. Assay platform : Mobility Shift Assay Substrate : SGKtide ATP (μ M) Km app / Bin : 23 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 4.2 IC50 at 1 mM ATP (nM) : 11 ### LATS2/MOBKL1A Product code 01-524 Human LATS2, catalytic domain [553-1088(end) amino acids of accession number NP_055387.2] was co-expressed as N-terminal GST-fusion protein (89 kDa) with human His-tagged MOBKL1A [1-216(end) amino acids of accession number NP_775739.1] and human BTN-MST2 [1-491(end) amino acids of accession number NP_006272.2] using baculovirus expression system. GST-LATS2/MOBKL1A was purified by using glutathione sepharose chromatography and DYKDDDDK tag antibody agarose. Assay platform : Mobility Shift Assay Substrate : SGKtide ATP (μ M) Km app / Bin : 38 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.7 IC50 at 1 mM ATP (nM) : 4.0 ### LCK Product code 08-170 Full-length human LCK [1-509(end) amino acids of accession number NP_005347.2] was expressed as N-terminal GST-fusion protein (85 kDa) using baculovirus expression system. GST-LCK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 14 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.5 IC50 at 1 mM ATP (nM) : 14 # LOK(STK10) Product code 07-315 Full-length human LOK [1-968(end) amino acids of accession number BAA35073.1] was expressed as N-terminal GST-fusion protein using baculovirus expression system. GST-LOK was purified by using glutathione sepharose chromatography. GST-LOK was cleaved by PreScission protease and GST-free LOK (114 kDa) was collected as flow-through fraction from glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Moesin-derived peptide ATP (µM) Km app / Bin : 100 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.49 IC50 at 1 mM ATP (nM) : n.a. **LTK** Product code 08-106 Human LTK, catalytic domain [498-796 amino acids of accession number NP_002335.2] was expressed as N-terminal GST-fusion protein (60 kDa) using baculovirus expression system. GST-LTK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 49 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.0 IC50 at 1 mM ATP (nM) : 7.1 **LYNa** Product code 08-171 Full-length human LYNa [1-512(end) amino acids of accession number NP_002341.1] was expressed as N-terminal GST-fusion protein (86 kDa) using baculovirus expression system. GST-LYNa was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 14 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.0 IC50 at 1 mM ATP (nM) : 22 **LYNb** Product code 08-172 Full-length human LYNb [1-491(end) amino acids of accession number NP_001104567.1] was expressed as N-terminal GST-fusion protein (83 kDa) using baculovirus expression system. GST-LYNb was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 18 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.0 IC50 at 1 mM ATP (nM) : 21 MAP4K2 Product code 07-111 Full-length human MAP4K2 [1-820(end) amino acid of accession number NP_004570.2] was expressed as N-terminal GST-fusion protein (119 kDa) using baculovirus expression system. GST-MAP4K2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K2 peptide ATP (μM) Km app / Bin : 93 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.3 IC50 at 1 mM ATP (nM) : n.a. **MAPKAPK2** Product code 02-142 Full-length human
MAPKAPK2 [1-400(end) amino acids of accession number NP_116584.2] was co-expressed as N-terminal GST-fusion protein (73 kDa) with human His-tagged p38β [1-364(end) amino acids of accession number NP_002742.3] and human His-tagged MAP2K6 [1-334(end) amino acids of accession number NP_002749.2] using baculovirus expression system. GST-MAPKAPK2 was purified by using glutathione sepharose chromatography and Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 3.6 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 80 IC50 at 1 mM ATP (nM) : 9300 ### **MAPKAPK3** Product code 02-143 Full-length human MAPKAPK3 [1-382(end) amino acids of accession number NP_004626.1] was co-expressed as N-terminal GST-fusion protein (70 kDa) with human His-tagged p38 β [1-364(end) amino acids of accession number NP_002742.3] and human His-tagged MAP2K6 [1-334(end) amino acids of accession number NP_002749.2] using baculovirus expression system. GST-MAPKAPK3 was purified by using glutathione sepharose chromatography and Ni-NTA chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (µM) Km app / Bin : 13 / 10 Metal : Mg Reference compound : K252a IC50 at ATP Bin (nM) : 410 IC50 at 1 mM ATP (nM): n.a. ### **MAPKAPK5** Product code 02-144 Full-length human MAPKAPK5 [1-471(end) amino acids of accession number NP_003659.2] was co-expressed as N-terminal GST-fusion protein (81 kDa) with human His-tagged p38 β [1-364(end) amino acids of accession number NP_002742.3] and human His-tagged MAP2K6 [1-334(end) amino acids of accession number NP_002749] using baculovirus expression system. GST-MAPKAPK5 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μM) Km app / Bin : 12 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 320 IC50 at 1 mM ATP (nM) : n.a. ### MARK1 Product code 02-120 Full-length human MARK1 [1-795(end) amino acids of accession number AAF72103.1] was expressed as N-terminal GST-fusion protein (116 kDa) using baculovirus expression system. GST-MARK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μM) Km app / Bin : 8 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.17 IC50 at 1 mM ATP (nM) : n.a. ### MARK2 Product code 02-121 Full-length human MARK2 [1-745(end) amino acids of accession number NP_059672.2] was expressed as N-terminal GST-fusion protein (110 kDa) using baculovirus expression system. GST-MARK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (µM) Km app / Bin : 8.8 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.12 IC50 at 1 mM ATP (nM) : n.a. #### MARK3 Product code 02-122 Full-length human MARK3 [1-729(end) amino acids of accession number NP_002367.4] was expressed as N-terminal GST-fusion protein (108 kDa) using baculovirus expression system. GST-MARK3 was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μ M) Km app / Bin : 5 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.20 IC50 at 1 mM ATP (nM) : n.a. MARK4 Product code 02-123 Full-length human MARK4 [1-688(end) amino acids of accession number NP_113605.2] was expressed as N-terminal GST-fusion protein (103 kDa) using baculovirus expression system. GST-MARK4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μ M) Km app / Bin : 12 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.12 IC50 at 1 mM ATP (nM) : 5.6 **MELK** Product code 02-124 Truncated human MELK [1-493 amino acids of accession number NP_055606.1] was expressed as N-terminal GST-fusion protein (83 kDa) using E. coli expression system. GST-MELK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 38 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.81 IC50 at 1 mM ATP (nM) : n.a. MER(MERTK) Product code 08-108 Human MER, cytoplasmic domain [528-999(end) amino acids of accession number NP_006334.2] was expressed as N-terminal GST-fusion protein (80 kDa) using baculovirus expression system. GST-MER was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μM) Km app / Bin : 36 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.61 IC50 at 1 mM ATP (nM) : 5.3 **MET** Product code 08-151 Human MET, cytoplasmic domain [956-1390(end) amino acids of accession number NP_000236.2] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-MET was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 67 IC50 at 1 mM ATP (nM) : 730 MET[D1228H] Product code 08-540 Human MET, cytoplasmic domain [956-1390(end) amino acids and D1228H of accession number NP_000236.2] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-MET[D1228H] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 25 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 59 IC50 at 1 mM ATP (nM) : 1200 ### MET[M1250T] Product code 08-545 Human MET, cytoplasmic domain [956-1390(end) amino acids and M1250T of accession number NP_000236.2] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-MET[M1250T] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 17 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 86 IC50 at 1 mM ATP (nM) : 1900 ## MET[Y1235D] Product code 08-198 Human MET, cytoplasmic domain [956-1390(end) amino acids and Y1235D of accession number NP_000236.2] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-MET[Y1235D] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 71 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 79 IC50 at 1 mM ATP (nM) : 390 # MINK(MINK1) Product code 07-139 Human MINK, catalytic domain [1-314 amino acids of accession number NP_056531.1] was expressed as N-terminal GST-fusion protein (63 kDa) using baculovirus expression system. GST-MINK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (µM) Km app / Bin : 16 / 50 Metal : Mg Reference compound : K252a IC50 at ATP Bin (nM) : 5.5 IC50 at 1 mM ATP (nM) : 4 7 # MNK1(MKNK1) Product code 02-145 Full-length human MNK1 [1-424(end) amino acids and T344D of accession number NP_001129025.1] was expressed as N-terminal GST-fusion protein (74 kDa) using baculovirus expression system. GST-MNK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : RS peptide ATP (µM) Km app / Bin : 460 / 450 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 21 IC50 at 1 mM ATP (nM) : n.a. # MNK2(MKNK2) Product code 02-146 Full-length human MNK2 [1-465(end) amino acids and T379D of accession number NP_951009.1] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-MNK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : RS peptide ATP (µM) Km app / Bin : 110 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 7.5 IC50 at 1 mM ATP (nM) : 44 ### MRCKα(CDC42BPA) Product code 01-107 Truncated human MRCKα [1-574 amino acids of accession number NP_003598.2] was expressed as N-terminal GST-fusion protein (93 kDa) using baculovirus expression system. GST-MRCKα was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DAPK1tide ATP (μ M) Km app / Bin : 0.45 / 1 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.2 IC50 at 1 mM ATP (nM) : n.a. ## MRCKβ(CDC42BPB) Product code 01-108 Truncated human MRCK β [1-473 amino acids of accession number NP_006026.3] was expressed as N-terminal GST-fusion protein (82 kDa) using baculovirus expression system. GST-MRCK β was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DAPK1tide ATP (μM) Km app / Bin : 0.67 / 1 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.6 IC50 at 1 mM ATP (nM) : n.a. # MSK1(RPS6KA5) Product code 01-147 Full-length human MSK1 [1-802(end) amino acids of accession number NP_004746.2] was co-expressed as N-terminal GST-fusion protein (117 kDa) with human His-tagged Erk2 [1-360 amino acids of accession number NP_002736.3] using baculovirus expression system. GST-MSK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Crosstide ATP (μ M) Km app / Bin : 13 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.6 IC50 at 1 mM ATP (nM) : 30 # MSK2(RPS6KA4) Product code 01-148 Full-length human MSK2 [1-772(end) amino acids of accession number NP_003933.1] was co-expressed as N-terminal GST-fusion protein (114 kDa) with human His-tagged Erk2 [1-360 amino acids of
accession number NP_002736.3] using baculovirus expression system. GST-MSK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Crosstide ATP (μ M) Km app / Bin : 40 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 4.3 IC50 at 1 mM ATP (nM) : 20 ### MSSK1(STK23) Product code 04-159 Full-length human MSSK1 [1-567(end) amino acids of accession number NP_055185.2] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-MSSK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 56 / 50 Metal : Mg Reference compound : K252a IC50 at ATP Bin (nM) : 220 IC50 at 1 mM ATP (nM) : n.a. MST1(STK4) Product code 07-116 Full-length human MST1 [1-487(end) amino acids of accession number NP_006273.1] was expressed as N-terminal GST-fusion protein (83 kDa) using baculovirus expression system. GST-MST1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRS1 ATP (μ M) Km app / Bin : 50 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 0.55 MST2(STK3) Product code 07-117 Full-length human MST2 [1-491(end) amino acids of accession number NP_006272.2] was expressed as N-terminal GST-fusion protein (83 kDa) using baculovirus expression system. GST-MST2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRS1 ATP (μ M) Km app / Bin : 69 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 6.7 IC50 at 1 mM ATP (nM) : 3.1 MST3(STK24) Product code 07-118 Full-length human MST3 [1-431(end) amino acids of accession number NP_001027467.2] was expressed as N-terminal GST-fusion protein (75 kDa) using baculovirus expression system. GST-MST3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Moesin-derived peptide ATP (μ M) Km app / Bin : 66 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.9 IC50 at 1 mM ATP (nM) : n.a. MST4 Product code 07-119 Full-length human MST4 [1-416(end) amino acids of accession number NP_057626.2] was expressed as N-terminal GST-fusion protein (74 kDa) using baculovirus expression system. GST-MST4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Moesin-derived peptide ATP (μ M) Km app / Bin : 76 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 6.3 IC50 at 1 mM ATP (nM) : n.a. **MUSK** Product code 08-153 Human MUSK, catalytic domain [527-869(end) amino acids of accession number NP_005583.1] was expressed as N-terminal GST fusion protein (66 kDa) using baculovirus expression system. GST-MUSK was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 14 / 10 Metal : Mg+Mn Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.1 IC50 at 1 mM ATP (nM) : 2.6 ### NDR1(STK38) Product code 01-125 Full-length human NDR1[1-465(end) amino acids of accession number NP_009202.1] was co-expressed as N-terminal GST-fusion protein (81kDa) with human His-tagged MOBKL1A [1-216(end) amino acids of accession number NP_775739.1] using baculovirus expression system. GST-NDR1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SGKtide ATP (μ M) Km app / Bin : 12 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.8 IC50 at 1 mM ATP (nM) : n.a. ## NDR2(STK38L) Product code 01-126 Full-length human NDR2 [1-464(end) amino acids of accession number NP_055815.1] was co-expressed as N-terminal GST-fusion protein (81 kDa) with human His-tagged MOBKL1A [1-216(end) amino acids of accession number NP_775739.1] using baculovirus expression system. GST-NDR2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SGKtide ATP (μ M) Km app / Bin : 7.6 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.1 IC50 at 1 mM ATP (nM) : n.a. ### NEK₁ Product code 05-123 Human NEK1, catalytic domain [1-505 amino acids of accession number NP_036356.1] was expressed as N-terminal GST-fusion protein (85 kDa) using baculovirus expression system. GST-NEK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CDK7 peptide ATP (μ M) Km app / Bin : 64 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 51 IC50 at 1 mM ATP (nM) : 650 ### NEK2 Product code 05-226 Full-length human NEK2 [1-445(end) amino acids of accession number NP_002488.1] was expressed as N-terminal His-tagged protein (55 kDa) using baculovirus expression system. His-tagged NEK2 was purified by using Ni-NTA affinity chromatography. Purified His-NEK2 was digested by recombinant His-TEV protease, and His-tag free NEK2 (ca. 52 kDa) was collected as flow-through fraction from Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : CDK7 peptide ATP (μ M) Km app / Bin : 65 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3700 IC50 at 1 mM ATP (nM) : >10000 #### NEK4 Product code 05-128 Full-length human NEK4 [1-841(end) amino acids of accession number NP_003148.2] was expressed as N-terminal GST-fusion protein (122 kDa) using baculovirus expression system. GST-NEK4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (µM) Km app / Bin : 51 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 120 IC50 at 1 mM ATP (nM) : n.a. NEK6 Product code 05-130 Full-length human NEK6 [1-313(end) amino acids of accession number NP_055212.2] was expressed as N-terminal GST-fusion protein (63 kDa) using baculovirus expression system. GST-NEK6 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CDK7 peptide ATP (μ M) Km app / Bin : 69 / 75 Metal : Mg Reference compound : PKR Inhibitor IC50 at ATP Bin (nM) : 19000 IC50 at 1 mM ATP (nM) : >10000 NEK7 Product code 05-131 Full-length human NEK7 [1-302(end) amino acids of accession number NP_598001.1] was expressed as N-terminal GST-fusion protein (62 kDa) using baculovirus expression system. GST-NEK7 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CDK7 peptide ATP (μ M) Km app / Bin : 40 / 50 Metal : Mg Reference compound : PKR Inhibitor IC50 at ATP Bin (nM) : 8500 IC50 at 1 mM ATP (nM) : >10000 NEK9 Product code 05-133 Truncated human NEK9 [1-346, 733-979(end) amino acids of accession number NP_149107.4] was expressed as N-terminal GST-fusion protein (93 kDa) using baculovirus expression system. GST-NEK9 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CDK7 peptide Substrate : CDK7 peptide ATP (μ M) Km app / Bin : 190 / 200 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 150 IC50 at 1 mM ATP (nM) : 400 NIM1K(MGC42105) Product code 02-175 Full-length human NIM1K [1-436(end) amino acids of accession number NP_699192.1] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-NIM1K was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μ M) Km app / Bin : 21 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 300 IC50 at 1 mM ATP (nM) : n.a. Nuak1 Product code 02-126 Full-length human NuaK1 [1-661(end) amino acids of accession number NP_055655.1] was expressed as N-terminal GST-fusion protein (102 kDa) using baculovirus expression system. GST-NuaK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μ M) Km app / Bin : 59 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 3.4 NuaK2 Product code 02-127 Full-length human NuaK2 [1-628(end) amino acids of accession number NP_112214.1] was expressed as N-terminal GST-fusion protein (98kDa) using baculovirus expression system. GST-NuaK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CHKtide ATP (μ M) Km app / Bin : 26 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.2 IC50 at 1 mM ATP (nM) : 2.3 p38α(MAPK14) Product code 04-152 Truncated human p38 α [9-352 amino acids of accession number NP_620581.1] was expressed as N-terminal GST-fusion protein (66 kDa) using E. coli expression system. GST-p38 α was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K6. Activated GST-p38 α was purified using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (µM) Km app / Bin : 150 / 150 Metal : Mg Reference compound : SB202190 IC50 at ATP Bin (nM) : 6.3 IC50 at 1 mM ATP (nM) : 22 p38β(MAPK11) Product code 04-153 Full-length human p38 β [1-364(end) amino acids of accession number NP_002742.3] was expressed as N-terminal GST-fusion protein (69 kDa) using E. coli expression system. GST-p38 β was purified by using glutathione chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (μ M) Km app / Bin : 63 / 75 Metal : Mg Reference compound : SB202190 IC50 at ATP Bin (nM) : 16 IC50 at 1 mM ATP (nM) : 110 p38γ(MAPK12) Product code 04-155 Full-length human p38γ [1-367(end) amino acids
of accession number NP_002960.2] was expressed as N-terminal GST-fusion protein (69 kDa) using E. coli expression system. GST-p38γ was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K6. Activated GST-p38γ was purified using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (μ M) Km app / Bin : 13 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 88 IC50 at 1 mM ATP (nM) : 2800 p38δ(MAPK13) Product code 04-154 Full-length human p38δ [1-365(end) amino acids of accession number NP_002745.1] was expressed as N-terminal GST-fusion protein (69 kDa) using E. coli expression system. GST-p38δ was purified by using glutathione sepharose chromatography and activated with His-tagged MAP2K6. Activated GST-p38δ was purified using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Modified Erktide ATP (μ M) Km app / Bin : 5.8 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 220 IC50 at 1 mM ATP (nM) : >10000 ### p70S6K(RPS6KB1) Product code 01-154 Human p70S6K, catalytic domain [1-421 amino acids and T412E of accession number NP_003152.1] was expressed as N-terminal GST-fusion protein (75 kDa) using baculovirus expression system. GST-p70S6K was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K2 peptide ATP (µM) Km app / Bin : 14 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): 98 ### p70S6Kβ(RPS6KB2) Product code 01-155 Full-length human p70S6Kβ [1-482(end) amino acids of accession number NP 003943.2] was expressed as N-terminal GST-fusion protein (81 kDa) using baculovirus expression system. GSTp70S6Kβ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K2 peptide ATP (μ M) Km app / Bin : 3.3 / 5 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.7 IC50 at 1 mM ATP (nM): n.a. ### PAK1 Product code 07-123 Full-length human PAK1 [1-545(end) amino acids of accession number NP 002567.3] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-PAK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : LIMKtide ATP (µM) Km app / Bin : 300 / 300 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): 11 ### PAK2 Product code 07-124 Full-length human PAK2 [1-524(end) amino acids of accession number NP 002568.2] was expressed as N-terminal GST-fusion protein (85 kDa) using baculovirus expression system. GST-PAK2 was purified by using glutathione sepharose chromatography. Assav platform : Mobility Shift Assay Substrate : DAPK1tide ATP (µM) Km app / Bin : 81 / 100 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 4.5 IC50 at 1 mM ATP (nM): 22 #### PAK4 Product code 07-126 Full-length human PAK4 [1-591(end) amino acids of accession number NP_005875.1] was expressed as N-terminal GST-fusion protein (91 kDa) using baculovirus expression system. GST-PAK4 was purified by using glutathione sepharose chromatography. : Mobility Shift Assay Assay platform : SGKtide Substrate ATP (µM) Km app / Bin : 2.5 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): n.a. PAK5(PAK7) Product code 07-127 Human PAK5, catalytic domain [425-719(end) amino acids of accession number NP_065074.1] was expressed as N-terminal GST-fusion protein (60 kDa) using baculovirus expression system. GST-PAK5 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DAPK1tide ATP (μ M) Km app / Bin : 1.9 / 1 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.5 IC50 at 1 mM ATP (nM) : 290 PAK6 Product code 07-128 Full-length human PAK6 [1-681(end) amino acids of accession number NP_064553.1] was expressed as N-terminal GST-fusion protein (102 kDa) using baculovirus expression system. GST-PAK6 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SGKtide ATP (μ M) Km app / Bin : 3.7 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.2 IC50 at 1 mM ATP (nM) : n.a. **PASK** Product code 02-128 Human PASK, catalytic domain [949-1323(end) amino acids of accession number NP_055963.2] was expressed as N-terminal GST-fusion protein (69 kDa) using baculovirus expression system. GST-PASK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (µM) Km app / Bin : 9.7 / 10 Metal : Mg Reference compound : Staur IC50 at ATP Bin (nM) : 13 IC50 at 1 mM ATP (nM) : 190 **PBK** Product code 05-168 Full-length human PBK [1-322(end) amino acids of accession number NP_060962.2] was expressed as N-terminal GST-fusion protein (63 kDa) using baculovirus expression system. GST-PBK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Histone H3 peptide : Staurosporine ATP (μ M) Km app / Bin : 33 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 69 IC50 at 1 mM ATP (nM) : 720 PDGFRα(PDGFRA) Product code 08-157 Human PDGFR α , cytoplasmic domain [550-1089(end) amino acids of accession number NP_006197.1] was expressed as N-terminal GST-fusion protein(89 kDa) using baculovirus expression system. GST-PDGFR α was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 28 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.30 IC50 at 1 mM ATP (nM) : 1.4 # PDGFRα(PDGFRA)[D842V] Product code 08-506 Human PDGFRα, cytoplasmic domain [550-1089(end) amino acids and D842V of accession number NP_006197.1] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-PDGFRα[D842V] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 21 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.25 IC50 at 1 mM ATP (nM) : 1.9 ## PDGFRα(PDGFRA)[T674I] Product code 08-503 Human PDGFR α , cytoplasmic domain [550-1089(end) amino acids and T674I of accession number NP_006197.1] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-PDGFR α [T674I] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 11 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.12 IC50 at 1 mM ATP (nM) : 1.1 # PDGFRα(PDGFRA)[V561D] Product code 08-507 Human PDGFR α , cytoplasmic domain [550-1089(end) amino acids and V561D of accession number NP_006197.1] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-PDGFR α [V561D] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 35 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.32 IC50 at 1 mM ATP (nM) : 1.6 # PDGFRβ(PDGFRB) Product code 08-158 Human PDGFR β , cytoplasmic domain [557-1106(end) amino acids of accession number NP_002600.1] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-PDGFR β was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 23 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.27 IC50 at 1 mM ATP (nM) : 0.62 # PDHK2(PDK2) Product code 10-140 Full-length human PDHK2 [1-407(end) amino acids of accession number NP_002602.2] was expressed as N-terminal GST-fusion protein (74 kDa) using baculovirus expression system. GST-PDHK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PDHKtide ATP (μ M) Km app / Bin : 28 / 25 Metal : Mg+K Reference compound : VER-246608 IC50 at ATP Bin (nM) : 33 IC50 at 1 mM ATP (nM) : n.a. # PDHK4(PDK4) Product code 10-125 Full-length human PDHK4 [1-411(end) amino acids of accession number NP_002603.1] was expressed as N-terminal GST-fusion protein (73 kDa) using E.coli expression system. GST-PDHK4 was purified by using glutathione affinity chromatography. Assay platform : Mobility Shift Assay Substrate : PDHKtide ATP (µM) Km app / Bin : 19 / 25 Metal : Mg+K Reference compound : VER-246608 IC50 at ATP Bin (nM) IC50 at 1 mM ATP (nM): n.a. ### PDK1(PDPK1) Product code 01-132 Full-length human PDK1 [1-556(end) amino acids of accession number NP_002604.1] was expressed as N-terminal GST-fusion protein (91 kDa) using baculovirus expression system. GST-PDK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : T308tide ATP (µM) Km app / Bin : 9.6 / 10 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 9.2 IC50 at 1 mM ATP (nM): 12 ## PEK(EIF2AK3) Product code 05-155 Human PEK, cytoplasmic domain [536-1116(end) amino acids of accession number NP_004827.3] was expressed as N-terminal GST-fusion protein (94 kDa) using E.coli expression system. GST-PEK was purified by using glutathione sepharose chromatography and anion exchange chromatography. : IMAP Assay platform Substrate : SRPKtide ATP (μ M) Km app / Bin : 13 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3600 IC50 at 1 mM ATP (nM): n.a. # PGK(PRKG1) Product code 01-142 Full-length human PGK [1-686(end) amino acids of accession number NP 006249.1] was expressed as N-terminal
GST-fusion protein (105 kDa) using baculovirus expression system. GST-PGK was purified by using glutathione sepharose chromatography. Assav platform : Mobility Shift Assay Substrate : Kemptide ATP (µM) Km app / Bin : 8.2 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.1 IC50 at 1 mM ATP (nM): n.a. #### PHKG1 Product code 02-152 Full-length human PHKG1 [1-387(end) amino acids of accession number NP_006204.1] was expressed as N-terminal GST-fusion protein (72 kDa) using baculovirus expression system. GST-PHKG1 was purified by using glutathione sepharose chromatography. : Mobility Shift Assay Assay platform : GS peptide Substrate ATP (µM) Km app / Bin : 71 / 75 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.22 IC50 at 1 mM ATP (nM): n.a. ### PHKG2 Product code 02-153 Full-length human PHKG2 [1-406(end) amino acids of accession number NP_000285.1] was expressed as N-terminal GST-fusion protein (74 kDa) using baculovirus expression system. GST-PHKG2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 8.1 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.74 IC50 at 1 mM ATP (nM) : n.a. ### PIK3CA/PIK3R1 Product code 11-401-20N Full-length human PIK3CA[1-1068(end) amino acids of accession number NP_006209.2] was co-expressed as N-terminal DYKDDDDK tagged, biotinylated protein (128 kDa) with PIK3R1[1-724(end) amino acids of accession number NP_852664.1] using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : PI(4,5)P2 ATP (µM) Km app / Bin : 89 / 100 Metal : Mg Reference compound : PI-103 IC50 at ATP Bin (nM) : 22 IC50 at 1 mM ATP (nM) : n.a. # PIK3CA[E542K]/PIK3R1 Product code 11-413-20N Full-length human PIK3CA[1-1068(end) amino acids and E542K of accession number NP_006209.2] was co-expressed as N-terminal DYKDDDDK tagged, biotinylated protein (128 kDa) with PIK3R1[1-724(end) amino acids of accession number NP_852664.1] using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : PI(4,5)P2 ATP (μ M) Km app / Bin : 42 / 50 Metal : Mg Reference compound : PI-103 IC50 at ATP Bin (nM) : 12 IC50 at 1 mM ATP (nM) : n.a. ## PIK3CA[E545K]/PIK3R1 Product code 11-414-20N Full-length human PIK3CA[1-1068(end) amino acids and E545K of accession number NP_006209.2] was co-expressed as N-terminal DYKDDDDK tagged, biotinylated protein (128 kDa) with PIK3R1[1-724(end) amino acids of accession number NP_852664.1] using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : PI(4,5)P2 ATP (μ M) Km app / Bin : 44 / 50 Metal : Mg Reference compound : PI-103 IC50 at ATP Bin (nM) : 11 IC50 at 1 mM ATP (nM) : n.a. # PIK3CA[H1047R]/PIK3R1 Product code 11-415-20N Full-length human PIK3CA[1-1068(end) amino acids and H1047R of accession number NP_006209.2] was co-expressed as N-terminal DYKDDDDK tagged, biotinylated protein (128 kDa) with PIK3R1[1-724(end) amino acids of accession number NP_852664.1] using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : PI(4,5)P2 ATP (μ M) Km app / Bin : 78 / 75 Metal : Mg Reference compound : PI-103 IC50 at ATP Bin (nM) : 10 IC50 at 1 mM ATP (nM) : n.a. ### PIK3CA[P539R]/PIK3R1 Product code 11-412-20N Full-length human PIK3CA[1-1068(end) amino acids and P539R of accession number NP_006209.2] was co-expressed as N-terminal DYKDDDDK tagged, biotinylated protein (128 kDa) with PIK3R1[1-724(end) amino acids of accession number NP_852664.1] using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : PI(4,5)P2 ATP (μ M) Km app / Bin : 37 / 50 Metal : Mg Reference compound : PI-103 IC50 at ATP Bin (nM) : 8.7 IC50 at 1 mM ATP (nM) : n.a. ## PIK3CA[R88Q]/PIK3R1 Product code 11-411-20N Full-length human PIK3CA[1-1068(end) amino acids and R88Q of accession number NP_006209.2] was co-expressed as N-terminal DYKDDDDK tagged, biotinylated protein (128 kDa) with PIK3R1[1-724(end) amino acids of accession number NP_852664.1] using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : PI(4,5)P2 ATP (μM) Km app / Bin : 42 / 50 Metal : Mg Reference compound : PI-103 IC50 at ATP Bin (nM) : 16 IC50 at 1 mM ATP (nM) : n.a. ### PIK3CB/PIK3R1 Product code 11-402-20N Full-length human PIK3CB[1-1070(end) amino acids of accession number NP_006210.1] was co-expressed as N-terminal DYKDDDDK tagged, biotinylated protein (126 kDa) with PIK3R1[1-724(end) amino acids of accession number NP_852664.1] (84kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : PI(4,5)P2 ATP (μ M) Km app / Bin : 88 / 100 Metal : Mg Reference compound : PI-103 IC50 at ATP Bin (nM) : 22 IC50 at 1 mM ATP (nM) : n.a. ### PIK3CD/PIK3R1 Product code 11-403-20N Full-length human PIK3CD[1-1044(end) amino acids of accession number NP_005017.3] was co-expressed as N-terminal DYKDDDDK tagged, biotinylated protein (123 kDa) with PIK3R1[1-724(end) amino acids of accession number NP_852664.1] (84kDa) using baculovirus expression system. The protein was purified by using DYKDDDDK tag antibody agarose. Assay platform : ADP-Glo Substrate : PI(4,5)P2 ATP (μ M) Km app / Bin : 37 / 50 Metal : Mg Reference compound : PI-103 IC50 at ATP Bin (nM) : 24 IC50 at 1 mM ATP (nM): n.a. ### PIKFYVE(PIP5K3) Product code 11-118 Full-length human PIKFYVE [1-2098(end) amino acids and S696N, L932S, Q995L, T998S, S1033A and Q1183K of accession number NP_055855.2] was expressed as N-terminal GST-fusion protein (265 kDa) using baculovirus expression system. GST-PIKFYVE was purified by using glutathione sepharose chromatography. Assay platform : ADP-Glo Substrate : PI(3)P ATP (µM) Km app / Bin : 36 / 50 Metal : Mg Reference compound : AG-183 IC50 at ATP Bin (nM) : 3900 IC50 at 1 mM ATP (nM) : n.a. PIM₁ Product code 02-054 Full-length human PIM1 [1-313(end) amino acids of accession number NP_002639.1] was expressed as N-terminal His-tagged protein (39 kDa) using baculovirus expression system. His-tagged PIM1 was purified by using Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : S6K2 peptide ATP (µM) Km app / Bin : 640 / 500 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 10 IC50 at 1 mM ATP (nM) : 20 PIM2 Product code 02-155 Full-length human PIM2 [1-311(end) amino acids of accession number NP_006866.2] was expressed as N-terminal GST-fusion protein (61 kDa) using baculovirus expression system. GST-PIM2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K2 peptide ATP (μ M) Km app / Bin : 4 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 14 IC50 at 1 mM ATP (nM) : 480 PIM₃ Product code 02-156 Full-length human PIM3 [1-326(end) amino acids of accession number NP_001001852.1] was expressed as N-terminal GST-fusion protein (63 kDa) using baculovirus expression system. GST-PIM3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K2 peptide ATP (μM) Km app / Bin : 130 / 150 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.36 IC50 at 1 mM ATP (nM) : 0.71 PIP4K2A Product code 11-115 Full-length human PIP4K2A [1-406(end) amino acids of accession number NP_005019] was expressed as N-terminal GST-fusion protein (73 kDa) using baculovirus expression system. GST-PIP4K2A was purified by using glutathione sepharose chromatography. Assay platform : ADP-Glo Substrate : PI(5)P ATP (μM) Km app / Bin : 20 / 25 Metal : Mg Reference compound : AG-183 IC50 at ATP Bin (nM) : 7600 IC50 at 1 mM ATP (nM) : n.a. PIP4K2B Product code 11-116 Full-length human PIP4K2B [1-416(end) amino acids of accession number NP_003550] was expressed as N-terminal GST-fusion protein (74 kDa) using baculovirus expression system. GST-PIP4K2B was purified by using glutathione sepharose chromatography. Assay platform : ADP-Glo Substrate : PI(5)P ATP (μM) Km app / Bin : 18 / 25 Metal : Mn Reference compound : AG-183 IC50 at ATP Bin (nM) : 48000 IC50 at 1 mM ATP (nM) : n.a. PIP5K1A Product code 11-111 Full-length human PIP5K1A [1-549(end) amino acids of accession number NP_003548.1] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-PIP5K1A was purified by using glutathione sepharose chromatography. Assay platform : ADP-Glo Substrate : PI(4)P ATP (μ M) Km app / Bin : 28 / 25 Metal : Mg Reference compound : AG-183 IC50 at ATP Bin (nM) : 10000 IC50 at 1 mM ATP (nM) : n.a. PIP5K1B Product code 11-112 Full-length human PIP5K1B [1-540(end) amino acids of accession number NP_003549.1] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-PIP5K1B was purified by using glutathione sepharose chromatography. Assay platform : ADP-Glo Substrate : PI(4)P ATP (µM) Km app / Bin : 95 / 100 Metal : Mg Reference compound : AG-183 IC50 at ATP Bin (nM) : 4300 IC50 at 1 mM ATP (nM) : n.a. PIP5K1C Product code 11-113 Full-length human PIP5K1C [1-668(end) amino acids of accession number NP_036530] was expressed as N-terminal GST-fusion protein (101 kDa) using baculovirus expression system. GST-PIP5K1C was purified by using glutathione sepharose chromatography. Assay platform : ADP-Glo Substrate : PI(4)P ATP (µM) Km app / Bin : 33 / 50 Metal : Mg Reference compound : AG-183 IC50 at ATP Bin (nM) : 1900 IC50 at 1 mM ATP (nM) : n.a. PIP5KL1 Product code 11-114 Full-length human
PIP5KL1 [1-394(end) amino acids of accession number NP_001128691.1] was expressed as N-terminal GST-fusion protein (72 kDa) using baculovirus expression system. GST-PIP5KL1 was purified by using glutathione sepharose chromatography. Assay platform : ADP-Glo Substrate : PI(4)P ATP (µM) Km app / Bin : 1 / 1 Metal : Mg Reference compound : AG-183 IC50 at ATP Bin (nM) : 2200 IC50 at 1 mM ATP (nM) : n.a. PKACα(PRKACA) Product code 01-127 Full-length human PKAC α [1-351(end) amino acids of accession number NP_002721.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-PKAC α was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 2.6 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.80 IC50 at 1 mM ATP (nM) : 86 ### PKACβ(PRKACB) Product code 01-128 Full-length human PKACβ [1-351(end) amino acids of accession number NP_002722.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-PKACβ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 4.7 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 37 ### PKACy(PRKACG) Product code 01-129 Full-length human PKACy [1-351(end) amino acids of accession number NP_002723.2] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-PKACy was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 4.5 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 3.1 IC50 at 1 mM ATP (nM) : n.a. # PKCα(PRKCA) Product code 01-133 Full-length human PKC α [1-672(end) amino acids of accession number NP_002728.1] was expressed as N-terminal GST-fusion protein (104 kDa) using baculovirus expression system. GST-PKC α was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide $\begin{array}{lll} \text{ATP (μM$) Km app / Bin} & : 36 \ / \ 50 \\ \text{Metal} & : \ \text{Mg+Ca} \end{array}$ Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.33 IC50 at 1 mM ATP (nM) : 3.6 # PKCβ1(PRKCB1) Product code 01-134 Full-length human PKC β 1 [1-671(end) amino acids of accession number NP_997700.1] was expressed as N-terminal GST-fusion protein (104 kDa) using baculovirus expression system. GST-PKC β 1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide ATP (μ M) Km app / Bin : 79 / 75 Metal : Mg+Ca Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.71 IC50 at 1 mM ATP (nM) : n.a. # PKCβ2(PRKCB2) Product code 01-165 Full-length human PKC β 2 [1-673(end) amino acids of accession number NP_002729.2] was expressed as N-terminal GST-fusion protein (104 kDa) using baculovirus expression system. GST-PKC β 2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide ATP (µM) Km app / Bin : 41 / 50 Metal : Mg+Ca Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.43 IC50 at 1 mM ATP (nM) : n.a. ### PKCy(PRKCG) Product code 01-137 Full-length human PKCγ [1-697(end) amino acids of accession number NP_002730.1] was expressed as N-terminal GST-fusion protein (106 kDa) using baculovirus expression system. GST-PKCγ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide $\begin{array}{lll} \text{ATP (μM$) Km app / Bin} & : & 74 \ / & 75 \\ \text{Metal} & : & \text{Mg+Ca} \end{array}$ Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.1 IC50 at 1 mM ATP (nM) : 11 ## PKCδ(PRKCD) Product code 01-135 Full-length human PKCδ [1-676(end) amino acids of accession number NP_006245.2] was expressed as N-terminal GST-fusion protein (105 kDa) using baculovirus expression system. GST-PKCδ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide ATP (μ M) Km app / Bin : 26 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.22 IC50 at 1 mM ATP (nM) : n.a. # PKCε(PRKCE) Product code 01-136 Full-length human PKCε [1-737(end) amino acids of accession number NP_005391.1] was expressed as N-terminal GST-fusion protein (111 kDa) using baculovirus expression system. GST-PKCε was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide ATP (μ M) Km app / Bin : 16 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.56 IC50 at 1 mM ATP (nM) : 5.6 # PKCζ(PRKCZ) Product code 01-141 Full-length human PKC ζ [1-592(end) amino acids of accession number NP_002735.3] was expressed as N-terminal GST-fusion protein (94kDa) using baculovirus expression system. GST-PKC ζ was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide ATP (μ M) Km app / Bin : 11 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 55 IC50 at 1 mM ATP (nM) : n.a. # PKCη(PRKCH) Product code 01-138 Full-length human PKCn [1-683(end) amino acids of accession number NP_006246.2] was expressed as N-terminal GST-fusion protein (105 kDa) using baculovirus expression system. GST-PKCn was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide ATP (μ M) Km app / Bin : 36 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.92 IC50 at 1 mM ATP (nM) : n.a. PKC0(PRKCQ) Product code 01-140 Full-length human PKC0 [1-706(end) amino acids of accession number NP_006248.1] was expressed as N-terminal GST-fusion protein (109 kDa) using baculovirus expression system. GST-PKC0 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide ATP (μ M) Km app / Bin : 18 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.72 IC50 at 1 mM ATP (nM) : n.a. PKC₁(PRKCI) Product code 01-139 Full-length human PKC_I[1-587(end) amino acids of accession number NP_002731.3] was expressed as N-terminal GST-fusion protein (94 kDa) using baculovirus expression system. GST-PKC_I was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : PKC peptide ATP (μ M) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 13 IC50 at 1 mM ATP (nM) : n.a. PKD1(PRKD1) Product code 02-157 Full-length human PKD1 [1-912(end) amino acids of accession number NP_002733.1] was expressed as N-terminal GST-fusion protein (129 kDa) using baculovirus expression system. GST-PKD1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 25 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.1 IC50 at 1 mM ATP (nM) : n.a. PKD2(PRKD2) Product code 02-158 Full-length human PKD2 [1-878(end) amino acids of accession number NP_057541.2] was expressed as N-terminal GST-fusion protein (124 kDa) using baculovirus expression system. GST-PKD2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 26 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.1 IC50 at 1 mM ATP (nM) : 16 PKD3(PRKD3) Product code 02-159 Full-length human PKD3 [1-890(end) amino acids of accession number NP_005804.1] was expressed as N-terminal GST-fusion protein (127 kDa) using baculovirus expression system. GST-PKD3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 34 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.80 IC50 at 1 mM ATP (nM) : n.a. PKN₁ Product code 01-144 Full-length human PKN1 [1-942(end) amino acids of accession number NP_002732.3] was expressed as N-terminal GST-fusion protein (132 kDa) using baculovirus expression system. GST-PKN1 was purified by using glutathione sepharose chromatography. Assay platform : IMAP Substrate : S6K peptide ATP (μ M) Km app / Bin : 19 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.15 IC50 at 1 mM ATP (nM) : n.a. PKR(EIF2AK2) Product code 05-156 Human PKR, catalytic domain [252-551(end) amino acids of accession number NP_002750.1] was expressed as N-terminal GST-fusion protein (62 kDa) using baculovirus expression system. GST-PKR was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : IMAP Substrate : SRPKtide ATP (μM) Km app / Bin : 13 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 87 IC50 at 1 mM ATP (nM) : n.a. PLK₁ Product code 05-157 Full-length human PLK1 [1-603(end) amino acids of accession number NP_005021.2] was expressed as N-terminal GST-fusion protein (95 kDa) using baculovirus expression system. GST-PLK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CDC25ctide ATP (μ M) Km app / Bin : 5.6 / 5 Metal : Mg Reference compound : GW843682X IC50 at ATP Bin (nM) : 3.6 IC50 at 1 mM ATP (nM) : 47 PLK₂ Product code 05-158 Full-length human PLK2 [1-685(end) amino acids of accession number NP_006613.2] was expressed as N-terminal GST-fusion protein (105 kDa) using baculovirus expression system. GST-PLK2 was purified by using glutathione sepharose chromatography. Assay platform : IMAP Substrate : CHK2
peptide ATP (μ M) Km app / Bin : 30 / 30 Metal : Mg Reference compound : GW843682X IC50 at ATP Bin (nM) : 4.8 IC50 at 1 mM ATP (nM) : n.a. PLK3 Product code 05-159 Human PLK3, catalytic domain [58-340 amino acids of accession number NP_004064.2] was expressed as N-terminal GST-fusion protein (59 kDa) using baculovirus expression system. GST-PLK3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CDC25ctide ATP (μ M) Km app / Bin : 6.8 / 5 Metal : Mg Reference compound : GW843682X IC50 at ATP Bin (nM) : 33 IC50 at 1 mM ATP (nM) : 450 **PRKX** Product code 01-130 Full-length human PRKX [1-358(end) amino acids of accession number NP_005035.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-PRKX was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Kemptide ATP (μ M) Km app / Bin : 20 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.59 IC50 at 1 mM ATP (nM) : n.a. PYK2(PTK2B) Product code 08-138 Full-length human PYK2 [1-967(end) amino acids of accession number NP_775267.1] was expressed as N-terminal GST-fusion protein (138 kDa) using baculovirus expression system. GST-PYK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 56 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.2 IC50 at 1 mM ATP (nM) : 4.9 QIK(SNF1LK2) Product code 02-129 Full-length human QIK(SNF1LK2) [1-926(end) amino acids of accession number NP_056006.1] was expressed as N-terminal GST-fusion protein (132 kDa) using baculovirus expression system. GST-QIK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : AMARA peptide ATP (μ M) Km app / Bin : 42 / 50 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.4 IC50 at 1 mM ATP (nM) : 2.9 **RET** Product code 08-159 Human RET, cytoplasmic domain [658-1114(end) amino acids of accession number NP_066124.1] was expressed as N-terminal GST-fusion protein(79 kDa) using baculovirus expression system. GST-RET was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (µM) Km app / Bin : 7.5 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.3 IC50 at 1 mM ATP (nM) : 20 **RET[G691S]** Product code 08-522 Human RET, cytoplasmic domain [658-1114(end) amino acids and G691S of accession number NP_066124.1] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-RET[G691S] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 13 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.1 IC50 at 1 mM ATP (nM) : 24 ### **RET[M918T]** Product code 08-508 Human RET, cytoplasmic domain [658-1114(end) amino acids and M918T of accession number NP_066124.1] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-RET[M918T] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 4.2 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.4 IC50 at 1 mM ATP (nM) : 81 ## **RET[S891A]** Product code 08-523 Human RET, cytoplasmic domain [658-1114(end) amino acids and S891A of accession number NP_066124.1] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-RET[S891A] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 11 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.44 IC50 at 1 mM ATP (nM) : 9.6 # **RET[Y791F]** Product code 08-521 Human RET, cytoplasmic domain [658-1114(end) amino acids and Y791F of accession number NP_066124.1] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-RET[Y791F] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 29 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.5 IC50 at 1 mM ATP (nM) : 26 ### ROCK1 Product code 01-109 Human ROCK1, catalytic domain [1-477 amino acids of accession number NP_005397.1] was expressed as N-terminal GST-fusion protein (82 kDa) using baculovirus expression system. GST-ROCK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : LIMKtide ATP (μ M) Km app / Bin : 3.1 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.6 IC50 at 1 mM ATP (nM) : 73 #### ROCK2 Product code 01-110 Human ROCK2, catalytic domain [1-553 amino acids of accession number NP_004841.2] was expressed as N-terminal GST-fusion protein (91 kDa) using baculovirus expression system. GST-ROCK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : LIMKtide ATP (μ M) Km app / Bin : 7.4 / 5 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.92 IC50 at 1 mM ATP (nM) : 21 RON(MST1R) Product code 08-152 Human RON, cytoplasmic domain [979-1400(end) amino acids of accession number NP_002438.1] was expressed as N-terminal GST-fusion protein (75kDa) using baculovirus expression system. GST-RON was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 27 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 37 IC50 at 1 mM ATP (nM) : 550 ROS(ROS1) Product code 08-163 Human ROS, cytoplasmic domain [1883-2347(end) amino acids of accession number NP_002935.2] was expressed as N-terminal GST-fusion protein (79 kDa) using baculovirus expression system. GST-ROS was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : IRS1 ATP (μ M) Km app / Bin : 37 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.4 IC50 at 1 mM ATP (nM) : 1.0 RSK1(RPS6KA1) Product code 01-149 Full-length human RSK1 [1-735(end) amino acids of accession number NP_002944.2] was expressed as N-terminal GST-fusion protein (110 kDa) using baculovirus expression system. GST-RSK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K peptide(N-FL) ATP (μM) Km app / Bin : 21 / 25 Metal : Mα Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.14 IC50 at 1 mM ATP (nM) : 2.5 RSK2(RPS6KA3) Product code 01-150 Full-length human RSK2 [1-740(end) amino acids of accession number NP_004577.1] was expressed as N-terminal GST-fusion protein (111 kDa) using baculovirus expression system. GST-RSK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K peptide(N-FL) ATP (μ M) Km app / Bin : 14 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.10 IC50 at 1 mM ATP (nM) : 2.1 RSK3(RPS6KA2) Product code 01-151 Full-length human RSK3 [1-733(end) amino acids of accession number NP_066958.2] was expressed as N-terminal GST-fusion protein (111 kDa) using baculovirus expression system. GST-RSK3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K peptide(N-FL) ATP (μ M) Km app / Bin : 9.9 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.11 IC50 at 1 mM ATP (nM) : 1.7 ### RSK4(RPS6KA6) Product code 01-152 Full-length human RSK4 [1-745(end) amino acids of accession number NP_055311.1] was expressed as N-terminal GST-fusion protein (111 kDa) using baculovirus expression system. GST-RSK4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : S6K peptide(N-FL) ATP (μ M) Km app / Bin : 20 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.051 IC50 at 1 mM ATP (nM) : 0.56 ### **SGK** Product code 01-158 Truncated human SGK [61-431(end) amino acids and S422D of accession number NP_005618.2] was co-expressed as N-terminal GST-fusion protein (68 kDa) with His-tagged PDK1 [1-556(end) amino acids of accession number NP_002604.1] using baculovirus expression system. GST-SGK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SGKtide ATP (μ M) Km app / Bin : 52 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 10 IC50 at 1 mM ATP (nM) : 99 ### SGK₂ Product code 01-159 Full-length human SGK2 [1-367(end) amino acids and S356D of accession number NP_733794.1] was co-expressed as N-terminal GST-fusion protein (68 kDa) with His-tagged PDK1 [1-556(end) amino acids of accession number NP_002604.1] using baculovirus expression system. GST-SGK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SGKtide ATP (μ M) Km app / Bin : 58 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 30 IC50 at 1 mM ATP (nM) : n.a. ### SGK3(SGKL) Product code 01-160 Truncated human SGK3 [119-496(end) amino acids and S486D of accession number NP_037389.4] was co-expressed as N-terminal GST-fusion protein (68 kDa) with His-tagged PDK1 [1-556(end) amino acids of accession number NP_002604.1] using baculovirus expression system. GST-SGK3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SGKtide ATP (μ M) Km app / Bin : 17 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin
(nM) : 42 IC50 at 1 mM ATP (nM) : n.a. # SIK(SNF1LK) Product code 02-131 Full-length human SIK [1-783(end) amino acids of accession number NP_775490.2] was expressed as N-terminal GST-fusion protein (112 kDa) using baculovirus expression system. GST-SIK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : AMARA peptide ATP (μ M) Km app / Bin : 47 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.8 IC50 at 1 mM ATP (nM) : 1.0 ### skMLCK(MYLK2) Product code 02-150 Full-length human skMLCK [1-596(end) amino acids of accession number NP_149109.1] was expressed as N-terminal GST-fusion protein (93 kDa) using baculovirus expression system. GST-skMLCK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MLCtide ATP (μ M) Km app / Bin : 820 / 1000 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 51 IC50 at 1 mM ATP (nM) : 51 ### **SLK** Product code 07-129 Full-length human SLK [1-1152(end) amino acids and S5N of accession number NP_055535.1] was expressed as N-terminal GST-fusion protein (160 kDa) using baculovirus expression system. GST-SLK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Moesin-derived peptide ATP (μ M) Km app / Bin : 36 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.32 IC50 at 1 mM ATP (nM) : n.a. ### SPHK1 Product code 11-105 Full-length human SPHK1 [1-384(end) amino acids of accession number NP_001136074.1] was expressed as N-terminal GST-fusion protein (69 kDa) using baculovirus expression system. GST-SPHK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Sphingosine Substrate : Sphingosine ATP (μ M) Km app / Bin : 20 / 25 Metal : Mg Reference compound : PF-543 IC50 at ATP Bin (nM) : 3.9 IC50 at 1 mM ATP (nM) : n.a. ### SPHK2 Product code 11-106 Full-length human SPHK2 [1-618(end) amino acids of accession number NP_001191089.1] was expressed as N-terminal GST-fusion protein (92 kDa) using baculovirus expression system. GST-SPHK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Sphingosine ATP (µM) Km app / Bin : 620 / 600 Metal : Mg Reference compound : PF-543 IC50 at ATP Bin (nM) : 400 IC50 at 1 mM ATP (nM) : n.a. SRC Product code 08-173 Full-length human SRC [1-536(end) amino acids of accession number NP_005408.1] was expressed as N-terminal GST-fusion protein (87 kDa) using baculovirus expression system. GST-SRC was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 31 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 5.3 IC50 at 1 mM ATP (nM) : 33 SRM(SRMS) Product code 08-174 Human SRM, catalytic domain [215-488(end) amino acids of accession number NP_543013.1] was expressed as N-terminal GST-fusion protein (58kDa) using baculovirus expression system. GST-SRM was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 38 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 290 IC50 at 1 mM ATP (nM) : 5000 SRPK1 Product code 04-160 Full-length human SRPK1 [1-655(end) amino acids and V504 deletion of accession number NP_003128.3] was expressed as N-terminal GST-fusion protein (101 kDa) using E. coli expression system. GST-SRPK1 was purified by using glutathione sepharose chromatography. Assay platform : IMAP Substrate : SRPKtide ATP (μM) Km app / Bin : 200 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 85 IC50 at 1 mM ATP (nM) : n.a. SRPK2 Product code 04-161 Full-length human SRPK2 [1-688(end) amino acids of accession number NP_872633.1] was expressed as N-terminal GST-fusion protein (104 kDa) using baculovirus expression system. GST-SRPK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : DYRKtide-F ATP (μ M) Km app / Bin : 14 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 600 IC50 at 1 mM ATP (nM) : n.a. **SYK** Product code 08-176 Full-length human SYK [1-635(end) amino acids of accession number NP_003168.2] was expressed as N-terminal GST-fusion protein (99 kDa) using baculovirus expression system. GST-SYK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μ M) Km app / Bin : 59 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.29 IC50 at 1 mM ATP (nM) : 0.63 TAK1-TAB1(MAP3K7) Product code 09-019 Fused gene of human TAK1 [1-303 amino acids of accession number NP_663304.1] and human TAB1 [437-504 amino acids of accession number NP_006107.1] was expressed as N-terminal Histagged protein (45kDa) using baculovirus expression system. Histagged TAK1-TAB1 was purified by using Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : LRRKtide ATP (μ M) Km app / Bin : 37 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 12 IC50 at 1 mM ATP (nM) : 27 TAOK2 Product code 07-133 Human TAOK2, catalytic domain [1-319 amino acid of accession number NP_004774.1] was expressed as N-terminal GST-fusion protein (63 kDa) using baculovirus expression system. GST-TAOK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : TAOKtide ATP (μ M) Km app / Bin : 39 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 24 IC50 at 1 mM ATP (nM) : 100 TBK1 Product code 05-115 Full-length human TBK1 [1-729(end) amino acids of accession number NP_037386.1] was expressed as N-terminal GST-fusion protein (111 kDa) using baculovirus expression system. GST-TBK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CKtide ATP (μ M) Km app / Bin : 21 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.2 IC50 at 1 mM ATP (nM) : 6.2 **TEC** Product code 08-182 Human TEC, catalytic domain [359-631(end) amino acids of accession number NP_003206.2] was expressed as N-terminal GST-fusion protein (59 kDa) using baculovirus expression system. GST-TEC was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μM) Km app / Bin : 55 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 20 IC50 at 1 mM ATP (nM) : 220 TIE2(TEK) Product code 08-185 Human TIE2, cytoplasmic domain [771-1124(end) amino acids of accession number NP_000450.1] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-TIE2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide ATP (μM) Km app / Bin : 94 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 100 IC50 at 1 mM ATP (nM) : 190 TNIK Product code 07-138 Human TNIK, catalytic domain [1-314 amino acids of accession number NP_055843.1] was expressed as N-terminal GST-fusion protein (62 kDa) using baculovirus expression system. GST-TNIK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Moesin-derived peptide ATP (μ M) Km app / Bin : 16 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 11 TNK1 Product code 08-104 Human TNK1, catalytic domain [106-390 amino acids of accession number Q13470-2] was expressed as N-terminal GST-fusion protein (58 kDa) using baculovirus expression system. GST-TNK1 was purified by using glutathione sepharose chromatography and gel filtration chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μM) Km app / Bin : 71 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.55 IC50 at 1 mM ATP (nM): 17 TRKA(NTRK1) Product code 08-186 Human TRKA, cytoplasmic domain [436-790(end) amino acids of accession number NP_001012331.1] was expressed as N- terminal GST-fusion protein (67 kDa) using baculovirus expression system. GST-TRKA was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (µM) Km app / Bin : 65 / 75 Metal : Ma Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.34 IC50 at 1 mM ATP (nM): 0.64 TRKB(NTRK2) Product code 08-187 Human TRKB, cytoplasmic domain [456-822(end) amino acids of accession number NP_001018074.1] was expressed as N- terminal GST-fusion protein (69 kDa) using baculovirus expression system. GST-TRKB was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (µM) Km app / Bin : 80 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.29 IC50 at 1 mM ATP (nM): 0.55 TRKC(NTRK3) Product code 08-197 Human TRKC, cytoplasmic domain [456-825(end) amino acids of accession number NP_002521.2] was expressed as N-terminal GST-fusion protein (69 kDa) using baculovirus expression system. GST-TRKC was purified by using glutathione sepharose chromatography. Assav platform : Mobility Shift Assay Substrate : Srctide ATP (µM) Km app / Bin : 47 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.32 IC50 at 1 mM ATP (nM): 1.0 TSSK1 Product code 02-364 Full-length human TSSK1 [1-367(end) amino acids of accession number NP_114417.1] was expressed as N-terminal GST-fusion protein using baculovirus expression system. GST-TSSK1 was purified by using glutathione sepharose chromatography. GST-TSSK1 was cleaved by PreScission protease and GST-free TSSK1 (42 kDa) was collected as
flow-through fraction from glutathione sepharose chromatography. : Mobility Shift Assay Assay platform : GS peptide Substrate ATP (µM) Km app / Bin : 11 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.19 IC50 at 1 mM ATP (nM): 0.95 TSSK2 Product code 02-165 Full-length human TSSK2 [1-358(end) amino acids of accession number NP_443732.3] was expressed as N-terminal GST-fusion protein (68 kDa) using baculovirus expression system. GST-TSSK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 8.8 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 4.7 IC50 at 1 mM ATP (nM) : n.a. TSSK3 Product code 02-166 Full-length human TSSK3 [2-268(end) amino acids of accession number NP_443073.1] was expressed as N-terminal GST-fusion protein (57 kDa) using baculovirus expression system. GST-TSSK3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : GS peptide ATP (μ M) Km app / Bin : 45 / 50 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 12 IC50 at 1 mM ATP (nM) : n.a. **TXK** Product code 08-183 Human TXK, catalytic domain [260-527(end) amino acids of accession number NP_003319.2] was expressed as N-terminal GST-fusion protein (58 kDa) using baculovirus expression system. GST-TXK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μM) Km app / Bin : 110 / 100 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 45 IC50 at 1 mM ATP (nM) : 220 TYK2 Product code 08-147 Human TYK2, catalytic domain [871-1187(end) amino acids of accession number NP_003322.3] was expressed as N-terminal GST-fusion protein (63 kDa) using baculovirus expression system. GST-TYK2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 18 / 25 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.0 IC50 at 1 mM ATP (nM) : 7.0 TYRO3 Product code 08-109 Human TYRO3, cytoplasmic domain of [453-890(end) amino acids of accession number NP_006284.2] was expressed as N-terminal GST fusion protein (76 kDa) using baculovirus expression system. GST-TYRO3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : CSKtide ATP (μ M) Km app / Bin : 80 / 75 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.3 IC50 at 1 mM ATP (nM) : 2.9 WNK₁ Product code 05-179 Human WNK1, catalytic domain [1-491 amino acids of accession number NP_061852.1] was expressed as N-terminal GST-fusion protein (81 kDa) using baculovirus expression system. GST-WNK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SPAKtide ATP (μ M) Km app / Bin : 140 / 150 Metal : Mg+Mn Reference compound : K252a IC50 at ATP Bin (nM) : 4500 IC50 at 1 mM ATP (nM) : n.a. WNK2 Product code 05-180 Human WNK2, catalytic domain [166-489 amino acids of accession number NP_006639.3] was expressed as N-terminal GST-fusion protein (65 kDa) using baculovirus expression system. GST-WNK2 was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : SPAKtide ATP (μ M) Km app / Bin : 48 / 50 Metal : Mg+Mn Reference compound : K252a IC50 at ATP Bin (nM) : 2300 IC50 at 1 mM ATP (nM) : n.a. WNK3 Product code 05-181 Human WNK3, catalytic domain [1-434 amino acids of accession number NP_065973.2] was expressed as N-terminal GST-fusion protein (76 kDa) using baculovirus expression system. GST-WNK3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : SPAKtide ATP (µM) Km app / Bin : 48 / 50 Metal : Mg+Mn Reference compound : K252a IC50 at ATP Bin (nM) : 1300 IC50 at 1 mM ATP (nM) : n.a. YES(YES1) Product code 08-175 Full-length human YES [1-543(end) amino acids of accession number NP_005424.1] was expressed as N-terminal GST-fusion protein (88 kDa) using baculovirus expression system. GST-YES was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 13 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 2.4 IC50 at 1 mM ATP (nM) : 23 YES(YES1)[T348I] Product code 08-533 Full-length human YES [1-543(end) amino acids and T348I of accession number NP_005424.1] was expressed as N-terminal GST-fusion protein (89 kDa) using baculovirus expression system. GST-YES[T348I] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Srctide ATP (μ M) Km app / Bin : 8.5 / 10 Metal : Mg Reference compound : Staurosporine IC50 at ATP Bin (nM) : 1.4 IC50 at 1 mM ATP (nM) : 45 ## ZAP70 Product code 08-177 Full-length human ZAP70 [1-619(end) amino acids of accession number NP_001070] was expressed as N-terminal GST-fusion protein (97 kDa) using baculovirus expression system. GST-ZAP70 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Blk/Lyntide $\begin{array}{lll} \text{ATP (μM$) Km app / Bin} & : & 3.3 \ / \ 5 \\ \text{Metal} & : & \text{Mg+Mn} \end{array}$ Reference compound : Staurosporine IC50 at ATP Bin (nM) : 0.76 IC50 at 1 mM ATP (nM) : 34 #### **BRAF** Product code 09-122 Human BRAF, catalytic domain [433-726 amino acid of accession number NP_004324.2] was expressed as N-terminal GST-fusion protein (60 kDa) using baculovirus expression system. GST-BRAF was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : ZM336372 IC50 at 1 mM ATP (nM) : >10000 *MAP2K1/Erk2/Modified Erktide ## BRAF[V600E] Product code 09-144 Human BRAF, catalytic domain [433-726 amino acids and V600E of accession number NP_004324.2] was expressed as N-terminal GST-fusion protein (60 kDa) using baculovirus expression system. GST-BRAF[V600E] was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : ZM336372 IC50 at 1 mM ATP (nM): 662 *MAP2K1/Erk2/Modified Erktide ## COT(MAP3K8) Product code 07-301 Human COT, catalytic domain [30-397 amino acids of accession number NP_005195.2] was expressed as N-terminal GST-fusion protein using baculovirus expression system. GST-COT was purified by using glutathione sepharose chromatography. GST-COT was cleaved by PreScission protease and GST-free COT (42 kDa) was collected as flow-through fraction from glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 120 *MAP2K1/Erk2/Modified Erktide ### DLK(MAP3K12) Product code 09-111 Human DLK, catalytic domain [1-520 amino acid of accession number NP_006292.3] was expressed as N-terminal GST-fusion protein (86 kDa) using baculovirus expression system. GST-DLK was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K4/MAP2K7 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 460 *(MAP2K4/MAP2K7)/JNK2/Modified Erktide ### MAP2K1 Product code 07-141 Full-length human MAP2K1 [1-393(end) amino acids of accession number NP_002746.1] was co-expressed as N-terminal GST-fusion protein (71 kDa) with human His-tagged RAF1 [306-648(end) amino acids and Y340D and Y341D of accession number NP_002871.1] using baculovirus expression system. GST-MAP2K1 was purified by using glutathione sepharose chromatography and Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : Erk2 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 58 *Erk2/Modified Erktide 72 #### MAP2K2 Product code 07-142 Full-length human MAP2K2 [1-400(end) amino acids of accession number NP_109587.1] was co-expressed as N-terminal GST-fusion protein (71 kDa) with human His-tagged RAF1 [306-648(end) amino acids and Y340D and Y341D of accession number NP_002871.1] using baculovirus expression system. GST-MAP2K2 was purified by using glutathione sepharose chromatography and Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : Erk2 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 54 *Erk2/Modified Erktide # MAP2K3 Product code 07-143 Full-length human MAP2K3 [1-347(end) amino acids of accession number NP_659731.1] was co-expressed as N-terminal GST-fusion protein (67 kDa) with human His-tagged MLK3 [99-398 amino acids of accession number NP_002410.1] using baculovirus expression system. GST-MAP2K3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : p38a Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 790 *p38a/Modified Erktide # MAP2K4 Product code 07-144 Full-length human MAP2K4 [1-399(end) amino acids of accession number NP_003001.1] was co-expressed as N-terminal GST-fusion protein (71 kDa) with human His-tagged MAP3K3 [1-626(end) amino acids of accession number NP_002392.2] using baculovirus expression system. GST-MAP2K4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : JNK2 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 4600 *JNK2/Modified Erktide ### MAP2K5 Product code 07-145 Full-length human MAP2K5 [1-448(end) amino acids of accession number NP_660143.1] was co-expressed as N-terminal GST-fusion protein (77 kDa) with human His-tagged MAP3K3[1-626(end) amino acids of
accession number NP_002392.2], CDC37 and HSP90 using baculovirus expression system. GST-MAP2K5 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : Erk5 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 62 *Erk5/EGFR-derived peptide #### MAP2K6 Product code 07-146 Full-length human MAP2K6 [2-334(end) amino acids of accession number NP_002749.2] was co-expressed as N-terminal GST-fusion protein (64 kDa) with human His-tagged MLK3 [99-398 amino acids of accession number NP_002410.1] using baculovirus expression system. GST-MAP2K6 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : p38α Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 140 *p38a/Modified Erktide #### MAP2K7 Product code 07-148 Full-length human MAP2K7 [1-419(end) amino acids of accession number NP_660186.1] was co-expressed as N-terminal GST-fusion protein (75 kDa) with human His-tagged MAP3K3 [1-626(end) amino acids of accession number NP_002392.2] using baculovirus expression system. GST-MAP2K7 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : JNK2 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 1100 *JNK2/Modified Erktide ## MAP3K1 Product code 07-103 Human MAP3K1, catalytic domain [1327-1646(end) amino acids of accession number XP_042066.8] was expressed as N-terminal GST-fusion protein (62 kDa) using baculovirus expression system. GST-MAP3K1 was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 160 *MAP2K1/Erk2/Modified Erktide # MAP3K2 Product code 07-104 Human MAP3K2, catalytic domain [336-619(end) amino acids of accession number NP_006600.3] was expressed as N-terminal GST-fusion protein (59 kDa) using baculovirus expression system. GST-MAP3K2 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K4/MAP2K7 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 45 *(MAP2K4/MAP2K7)/JNK2/Modified Erktide ### MAP3K3 Product code 07-105 Full-length human MAP3K3 [1-626(end) amino acids of accession number NP_002392.2] was expressed as N-terminal GST-fusion protein (98 kDa) using baculovirus expression system. GST-fusion MAP3K3 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K6 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 72 *MAP2K6/p38a/Modified Erktide #### MAP3K4 Product code 07-106 Human MAP3K4, catalytic domain [1312-1608(end) amino acids of accession number NP_005913.2] was expressed as N-terminal GST-fusion protein (61 kDa) using baculovirus expression system. GST-MAP3K4 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K6 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 100 *MAP2K6/p38a/Modified Erktide #### MAP3K5 Product code 07-107 Human MAP3K5, catalytic domain [654-971 amino acids of accession number NP_005914.1] was expressed as N-terminal GST-tagged protein (62 kDa) using baculovirus expression system. GST-MAP3K5 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K6 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 14 *MAP2K6/p38a/Modified Erktide # MLK1(MAP3K9) Product code 09-115 Human MLK1, catalytic domain [110-422 amino acids of accession number NP_149132.2] was expressed as N-terminal GST-fusion protein (62kDa) using baculovirus expression system. GST-MLK1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 11 *MAP2K1/Erk2/Modified Erktide # MLK2(MAP3K10) Product code 09-116 Human MLK2, catalytic domain and leucine-zipper domain [75-462 amino acids of accession number NP_002437.2] was expressed as N-terminal GST-fusion protein (71kDa) using baculovirus expression system. GST-MLK2 was purified by using glutathione sepharose chromatography and gel filtration chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 45 *MAP2K1/Erk2/Modified Erktide # MLK3(MAP3K11) Product code 09-017 Human MLK3, catalytic domain [99-398 amino acids of accession number NP_002410.1] was expressed as N-terminal His-tagged protein (37kDa) using baculovirus expression system. His-tagged MLK3 was purified by using Ni-NTA affinity chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 4.8 *MAP2K1/Erk2/Modified Erktide #### MOS Product code 05-118 Full-length, human MOS [1-346(end) amino acids of accession number NP_005363.1] was expressed as N-terminal GST-fusion protein (65 kDa) using baculovirus expression system. GST-MOS was purified by using glutathione sepharose chromatography and anion exchange chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : Staurosporine IC50 at 1 mM ATP (nM): 32 *MAP2K1/Erk2/Modified Erktide # RAF1 Product code 09-125 Human RAF1, catalytic domain [306-648(end) amino acids and Y340D and Y341D of accession number NP_002871.1] was expressed as N-terminal GST-fusion protein (66 kDa) using baculovirus expression system. GST-RAF1 was purified by using glutathione sepharose chromatography. Assay platform : Mobility Shift Assay Substrate : MAP2K1 Cascade Assay* Metal : Mg Reference compound : ZM336372 IC50 at 1 mM ATP (nM): 2800 ^{*}MAP2K1/Erk2/Modified Erktide # **Assay conditions** #### **Test compounds** The test compound is dissolved in and diluted with dimethylsulfoxide (DMSO) to achieve 100-fold higher concentration which is specified by the sponsor. Then the solution is further 25-fold diluted with assay buffer to make the final test compound solution. Reference compounds for the assay control are prepared similarly. ## **Assay reagents and procedures** #### IMAPTM assay - 1) 4x Substrate/ATP/Metal solution and 2x kinase solution are prepared with assay buffer (20 mM HEPES, 0.01% Tween-20, 2 mM DTT, pH7.4). - 2) 5 μ L of 4x compound solution, 5 μ L of 4x Substrate/ATP/Metal solution, and 10 μ L of 2x kinase solution are mixed and incubated in a well of polystyrene 384 well black microplate for 1 hour at room temperature. - 3) 60 μ L of IMAP binding reagent (IMAPTM Screening Express kit; Molecular Devices) is added to the well, and incubated for over 30 minutes. - 4) The kinase reaction is evaluated by the fluorescence polarization at 485 nm for excitation and 530 nm for emission of the well. ## Off-chip Mobility Shift Assay (MSA) - 1) 4x Substrate/ATP/Metal solution is prepared with kit buffer (20 mM HEPES, 0.01% Triton X-100, 5 mM DTT, pH7.5), and 2x kinase solution is prepared with assay buffer (20 mM HEPES, 0.01% Triton X-100, 1 mM DTT, pH7.5). - 2) 5 μ L of 4x compound solution, 5 μ L of 4x Substrate/ATP/Metal solution, and 10 μ L of 2x kinase solution are mixed and incubated in a well of polypropylene 384 well microplate for 1 or 5 hour(s)* at room temperature. (*; depend on kinase) - 3) 70 μ L of Termination Buffer (127 mM HEPES, 0.01% Triton X-100, 26.7 mM EDTA-2Na, 1% DMSO, pH7.5) is added to the well. - 4) The reaction mixture is applied to LabChipTM system (PerkinElmer), and the product and substrate peptide peaks are separated and quantitated. - 5) The kinase reaction is evaluated by the product ratio calculated from peak heights of product(P) and substrate(S) peptides (P/(P+S)). #### Off-chip Mobility Shift Assay (MSA) with pre-incubation - 1) 4x Substrate/ATP/Metal solution is prepared with kit buffer (20 mM HEPES, 0.01% Triton X-100, 5 mM DTT, pH7.5), and 2x kinase solution is prepared with assay buffer (20 mM HEPES, 0.01% Triton X-100, 1 mM DTT, pH7.5). - 2) 5 μ L of 4x compound solution and 10 μ L of 2x kinase solution are mixed and incubated in a well of polypropylene 384 well microplate for 30 minutes at room temperature. - 3) 5 μL of 4x Substrate/ATP/Metal solution is added to the well, and incubated for 1 hour at room temperature. - 4) 70 μ L of Termination Buffer (127 mM HEPES, 0.01% Triton X-100, 26.7 mM EDTA-2Na, 1% DMSO, pH7.5) is added to the well. - 5) The reaction mixture is applied to LabChipTM system (PerkinElmer), and the product and substrate peptide peaks are separated and quantitated. - 6) The kinase reaction is evaluated by the product ratio calculated from peak heights of product(P) and substrate(S) peptides (P/(P+S)). ## ADP-GloTM Kinase Assay - 1) 4x compound solution and 4x ATP solution are prepared with assay buffer (50 mM MOPS, 1 mM DTT, pH7.2). 4x Substrate solution and 4x kinase/Metal solution are prepared with MOPS based buffer containing individual kinase specific additives. - 2) 5 μ L of 4x compound solution, 5 μ L of 4x Substrate solution, 5 μ L of 4x ATP solution, and 5 μ L of 4x kinase/Metal solution are mixed and incubated in a well of polystyrene 384 well black microplate for 1 hour at room temperature. - 3) 20 μL of ADP-GloTM Reagent (Promega) is added to the well, and incubated for over 40 minutes. - 4) 40 μ L of Kinase Detection Reagent (Promega) is added to the well, and incubated for over 40 minutes. - 5) The kinase reaction is evaluated by the endpoint luminescence of the well. # **Reaction conditions** # ATP Km Bin | ATT KIII DIII | D1 + C | Substrate | | ATP
 (μΜ) | Me | etal | Positive control | |-------------------------|----------|------------------------|------|-----|-------|------|------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | ABL | MSA | ABLtide | 1000 | 16 | 25 | Mg | 5 | Staurosporine | | ABL[E255K] | MSA | ABLtide | 1000 | 17 | 25 | Mg | 5 | Staurosporine | | ABL[T315I] | MSA | ABLtide | 1000 | 4.0 | 5 | Mg | 5 | Staurosporine | | ACK ¹⁾ | MSA | WASP peptide | 1000 | 97 | 100 | Mg | 5 | Staurosporine | | AKT1 | MSA | Crosstide | 1000 | 31 | 50 | Mg | 5 | Staurosporine | | AKT2 | MSA | Crosstide | 1000 | 110 | 100 | Mg | 5 | Staurosporine | | AKT3 | MSA | Crosstide | 1000 | 54 | 50 | Mg | 5 | Staurosporine | | ALK | MSA | Srctide | 1000 | 57 | 50 | Mg | 5 | Staurosporine | | ALK[C1156Y] | MSA | Srctide | 1000 | 64 | 75 | Mg | 5 | Staurosporine | | ALK[F1174L] | MSA | Srctide | 1000 | 49 | 50 | Mg | 5 | Staurosporine | | ALK[G1202R] | MSA | Srctide | 1000 | 31 | 50 | Mg | 5 | Staurosporine | | ALK[G1269A] | MSA | Srctide | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | ALK[L1196M] | MSA | Srctide | 1000 | 57 | 75 | Mg | 5 | Staurosporine | | ALK[R1275Q] | MSA | Srctide | 1000 | 84 | 100 | Mg | 5 | Staurosporine | | ALK[T1151_L1152insT] | MSA | Srctide | 1000 | 110 | 100 | Mg | 5 | Staurosporine | | EML4-ALK ¹⁾ | MSA | Srctide | 1000 | 43 | 50 | Mg | 5 | Staurosporine | | NPM1-ALK | MSA | Srctide | 1000 | 57 | 50 | Mg | 5 | Staurosporine | | ΑΜΡΚα1/β1/γ1 | MSA | SAMS peptide | 1000 | 130 | 150 | Mg | 5 | Staurosporine | | ΑΜΡΚα2/β1/γ1 | MSA | SAMS peptide | 1000 | 100 | 100 | Mg | 5 | Staurosporine | | ARG | MSA | ABLtide | 1000 | 24 | 25 | Mg | 5 | Staurosporine | | AurA | MSA | Kemptide | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | AurA/TPX2 ⁹⁾ | MSA | Kemptide | 1000 | 1.7 | 2 | Mg | 5 | Staurosporine | | AurB/INCENP | MSA | Kemptide | 1000 | 16 | 25 | Mg | 5 | Staurosporine | | AurC | MSA | Kemptide | 1000 | 24 | 25 | Mg | 5 | Staurosporine | | AXL | MSA | CSKtide | 1000 | 32 | 50 | Mg | 5 | Staurosporine | | BLK | MSA | Srctide | 1000 | 62 | 75 | Mg | 5 | Staurosporine | | BMX | MSA | Srctide | 1000 | 75 | 75 | Mg | 5 | Staurosporine | | BRK ¹⁾ | MSA | Blk/Lyntide | 1000 | 250 | 250 | Mg | 5 | Staurosporine | | BRSK1 | MSA | CHKtide | 1000 | 30 | 25 | Mg | 5 | Staurosporine | | BRSK2 | MSA | CHKtide | 1000 | 31 | 50 | Mg | 5 | Staurosporine | | BTK | MSA | Srctide | 1000 | 22 | 25 | Mg | 5 | Staurosporine | | BTK[C481S] | MSA | Srctide | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | BUB1/BUB3 | MSA | H2A peptide | 1000 | 2.9 | 5 | Mg | 5 | Staurosporine | | $CaMK1\alpha^{1)3)}$ | MSA | GS peptide | 1000 | 750 | 1000 | Mg | 5 | Staurosporine | | CaMK18 ¹⁾³⁾ | MSA | Synapsin peptide | 1000 | 11 | 10 | Mg | 5 | Staurosporine | | CaMK2α ³⁾ | MSA | GS peptide | 1000 | 33 | 50 | Mg | 5 | Staurosporine | | CaMK2β ³⁾ | MSA | GS peptide | 1000 | 19 | 25 | Mg | 5 | Staurosporine | | CaMK2γ ³⁾ | MSA | GS peptide | 1000 | 23 | 25 | Mg | 5 | Staurosporine | | CaMK2δ ³⁾ | MSA | GS peptide | 1000 | 6.3 | 5 | Mg | 5 | Staurosporine | | CaMK4 ³⁾ | MSA | GS peptide | 1000 | 20 | 25 | Mg | 5 | Staurosporine | | CDC7/ASK ¹⁾ | MSA | MCM2 peptide | 1000 | 2.8 | 5 | Mg | 10 | Staurosporine | | CDK1(CDC2)/CycB1 | MSA | Modified Histone H1 | 1000 | 34 | 50 | Mg | 5 | Staurosporine | | CDK2/CycA2 | MSA | Modified
Histone H1 | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | CDK2/CycE1 | MSA | Modified
Histone H1 | 1000 | 130 | 150 | Mg | 5 | Staurosporine | | | | Substrate | | ATP | (μΜ) | Me | etal | | |---|----------|-------------------------|--------------------|------|-------|----------|------|-----------------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | CDK3/CycE1 | MSA | Modified
Histone H1 | 1000 | 1000 | 1000 | Mg | 5 | Staurosporine | | CDK4/CycD3 ¹⁾ | MSA | DYRKtide-F | 1000 | 200 | 200 | Mg | 5 | Staurosporine | | CDK5/p25 | MSA | Modified | 1000 | 10 | 10 | Mg | 5 | Staurosporine | | _ | MSA | Histone H1 DYRKtide-F | | 330 | 300 | Ŭ | 5 | _ | | CDK6/CycD3 ¹⁾ CDK7/CycH/MAT1 ¹⁾ | MSA | CTD3 peptide | 1000
1000 | 32 | 500 | Mg
Mg | 5 | Staurosporine Staurosporine | | CDK9/CycT1 ¹⁾ | MSA | CDK9 substrate | | 9.4 | 10 | Ū | 5 | 1 | | | | | 1000 | | | Mg | | Staurosporine | | CGK2 ⁴⁾ | MSA | Kemptide | 1000 | 24 | 25 | Mg | 5 | Staurosporine | | CHK1 | MSA | CHKtide | 1000 | 50 | 50 | Mg | 5 | Staurosporine | | CHK2 | MSA | CHKtide | 1000 | 51 | 50 | Mg | 5 | Staurosporine | | CK1α ¹⁾ | MSA | CKtide | 1000 | 4.1 | 5 | Mg | 5 | 5-Iodotubercidin | | CK1γ1 | MSA | CKtide | 1000 | 6.3 | 5 | Mg | 5 | 5-Iodotubercidin | | CK1γ2 | MSA | CKtide | 1000 | 10 | 10 | Mg | 5 | 5-Iodotubercidin | | CK1γ3 | MSA | CKtide | 1000 | 3.2 | 5 | Mg | 5 | 5-Iodotubercidin | | CK1δ | MSA | CKtide | 1000 | 7.7 | 10 | Mg | 5 | 5-Iodotubercidin | | CK1ε ¹⁾ | MSA | CKtide | 1000 | 16 | 25 | Mg | 5 | 5-Iodotubercidin | | CK2α1/β | MSA | CK2tide | 1000 | 2.9 | 5 | Mg | 5 | TBB | | CK2α2/β | MSA | CK2tide | 1000 | 2.1 | 5 | Mg | 5 | TBB | | CLK1 | MSA | DYRKtide-F | 1000 | 11 | 10 | Mg | 5 | Staurosporine | | CLK2 | MSA | DYRKtide-F | 1000 | 140 | 150 | Mg | 5 | Staurosporine | | CLK3 | MSA | DYRKtide-F | 1000 | 75 | 75 | Mg | 5 | Staurosporine | | CRIK ¹⁾ | MSA | Histone H3 peptide | 1000 | 7.8 | 10 | Mg | 5 | Staurosporine | | CSK ¹⁾ | MSA | Srctide | 1000 | 4.8 | 5 | Mg, Mn | 5, 1 | Staurosporine | | DAPK1 | MSA | DAPK1tide | 1000 | 1.1 | 1 | | 5 | Staurosporine | | | | | | | | Mg | | - | | DCAMKL2 ¹⁾ | MSA | GS peptide | 1000 | 120 | 150 | Mg | 5 | Staurosporine | | DDR1 ¹⁾ | MSA | IRS1 | 1000 | 94 | 100 | Mg | 5 | Staurosporine | | DDR2 ¹⁾ | MSA | IRS1 | 1000 | 38 | 50 | Mg | 5 | Staurosporine | | DGKα | ADP-Glo | Diacylglycerol, POPS | 850000,
6750000 | 130 | 100 | Mg | 5 | - | | DGKβ | ADP-Glo | Diacylglycerol,
POPS | 850000,
6750000 | 61 | 50 | Mg | 5 | - | | DGKγ | ADP-Glo | Diacylglycerol,
POPS | 850000,
6750000 | 55 | 50 | Mg | 5 | - | | DGKδ | ADP-Glo | Diacylglycerol,
POPS | 850000,
6750000 | 120 | 100 | Mg | 5 | - | | DGKε | ADP-Glo | Diacylglycerol,
POPS | 775000,
1600000 | 120 | 100 | Mg | 5 | - | | DGKζ | ADP-Glo | Diacylglycerol,
POPS | 850000,
6750000 | 25 | 25 | Mg | 5 | - | | DGKη | ADP-Glo | Diacylglycerol,
POPS | 850000,
6750000 | 24 | 25 | Mg | 5 | - | | DGKθ | ADP-Glo | Diacylglycerol,
POPS | 850000,
6750000 | 37 | 50 | Mg | 5 | - | | DGKı | ADP-Glo | Diacylglycerol,
POPS | 850000,
6750000 | 34 | 50 | Mg | 5 | - | | DGKκ | ADP-Glo | Diacylglycerol,
POPS | 67500,
800000 | 17 | 25 | Mg | 1 | - | | DYRK1A | MSA | DYRKtide-F | 1000 | 16 | 25 | Mg | 5 | Staurosporine | | DYRK1B | MSA | DYRKtide-F | 1000 | 59 | 50 | Mg | 5 | Staurosporine | | DYRK2 | MSA | DYRKtide-F | 1000 | 7.7 | 10 | Mg | 5 | Staurosporine | | DYRK3 | MSA | DYRKtide-F | 1000 | 6.8 | 5 | Mg | 5 | Staurosporine | | EEF2K ¹⁾³⁾ | MSA | EEF2Ktide | 1000 | 12 | 10 | Mg | 5 | A-484954 | | EGFR | MSA | Srctide | 1000 | 2.7 | 5 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[C797S/L858R] | MSA | Srctide | 1000 | 4.1 | 5 | Mg, Mn | 5, 1 | Staurosporine | | | | Substrate | | ATP | (µM) | Me | etal . | Positive control | |----------------------------|----------|----------------------|------|------|-------|--------|--------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | EGFR[d746-750] | MSA | Srctide | 1000 | 19 | 25 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[d746-750/C797S] | MSA | Srctide | 1000 | 8.2 | 10 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[d746-750/T790M] | MSA | Srctide | 1000 | 5.4 | 5 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[d746-750/T790M/C797S] | MSA | Srctide | 1000 | 1.8 | 2 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[D770_N771insNPG] | MSA | Srctide | 1000 | 2.3 | 5 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[L858R] | MSA | Srctide | 1000 | 9.8 | 10 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[L861Q] | MSA | Srctide | 1000 | 7.5 | 10 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[T790M] | MSA | Srctide | 1000 | 0.90 | 1 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[T790M/L858R] | MSA | Srctide | 1000 | 1.9 | 2 | Mg, Mn | 5, 1 | Staurosporine | | EPHA1 | MSA | Blk/Lyntide | 1000 | 22 | 25 | Mg | 5 | Staurosporine | | EPHA2 | MSA | Blk/Lyntide | 1000 | 67 | 75 | Mg | 5 | Staurosporine | | EPHA3 | MSA | Blk/Lyntide | 1000 | 170 | 150 | Mg | 5 | Staurosporine | | EPHA4 | MSA | Blk/Lyntide | 1000 | 52 | 50 | Mg | 5 | Staurosporine | | EPHA5 | MSA | Blk/Lyntide | 1000 | 56 | 50 | Mg | 5 | Staurosporine | | EPHA6 | MSA | Blk/Lyntide | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | EPHA7 | MSA | Blk/Lyntide | 1000 | 58 | 50 | Mg | 5 | Staurosporine | | EPHA8 | MSA | Blk/Lyntide | 1000 | 69 | 75 | Mg | 5 | Staurosporine | | EPHB1 | MSA | Blk/Lyntide | 1000 | 29 | 25 | Mg | 5 | Staurosporine | | EPHB2 | MSA | Blk/Lyntide | 1000 | 86 | 100 | Mg | 5 | Staurosporine | | EPHB3 | MSA | Blk/Lyntide | 1000 | 49 | 50 | Mg | 5 | Staurosporine | | EPHB4 | MSA | Blk/Lyntide | 1000 | 56 | 50 | Mg | 5 | Staurosporine | | Erk1 | MSA | Modified Erktide | 1000 | 34 | 50 | Mg | 5 | K252a | | Erk2 | MSA | Modified Erktide | 1000 | 33 | 50 | Mg | 5 | K252a | | Erk5 ¹⁾ | MSA | EGFR-derived peptide | 1000 | 450 | 1000 | Mg | 5 | Staurosporine | | FAK ¹⁾ | MSA | Blk/Lyntide | 1000 | 25 | 25 | Mg | 5 | Staurosporine | | FER | MSA | Srctide | 1000 | 26 | 25 | Mg | 5 | Staurosporine | | FES | MSA | Srctide | 1000 | 43 | 50 | Mg | 5 | Staurosporine | | FGFR1 | MSA | CSKtide | 1000 | 89 | 100 | Mg | 5 | Staurosporine | | FGFR1[V561M] | MSA | CSKtide | 1000 | 33 | 50 | Mg | 5 | Staurosporine | | FGFR2 | MSA | CSKtide | 1000 | 66 | 75 | Mg | 5 | Staurosporine | | FGFR2[V564I] | MSA | CSKtide | 1000 | 21 | 25 | Mg | 5 | Staurosporine | | FGFR3 | MSA | CSKtide | 1000 | 43 | 50 | Mg | 5 | Staurosporine | | FGFR3[K650E] | MSA | CSKtide | 1000 | 41 | 50 | Mg | 5 | Staurosporine | | FGFR3[K650M] | MSA |
CSKtide | 1000 | 17 | 25 | Mg | 5 | Staurosporine | | FGFR3[V555L] | MSA | CSKtide | 1000 | 29 | 25 | Mg | 5 | Staurosporine | | FGFR3[V555M] | MSA | CSKtide | 1000 | 37 | 50 | Mg | 5 | Staurosporine | | FGFR4 | MSA | CSKtide | 1000 | 230 | 250 | Mg | 5 | Staurosporine | | FGFR4[N535K] | MSA | CSKtide | 1000 | 30 | 25 | Mg | 5 | Staurosporine | | FGFR4[V550E] | MSA | CSKtide | 1000 | 210 | 200 | Mg | 5 | Staurosporine | | FGFR4[V550L] | MSA | CSKtide | 1000 | 160 | 150 | Mg | 5 | Staurosporine | | FGR | MSA | Srctide | 1000 | 34 | 50 | Mg | 5 | Staurosporine | | FLT1 | MSA | CSKtide | 1000 | 140 | 150 | Mg | 5 | Staurosporine | | FLT3 | MSA | Srctide | 1000 | 94 | 100 | Mg | 5 | Staurosporine | | FLT4 | MSA | CSKtide | 1000 | 72 | 75 | Mg | 5 | Staurosporine | | FMS | MSA | Srctide | 1000 | 26 | 25 | Mg | 5 | Staurosporine | | FRK | MSA | Srctide | 1000 | 62 | 75 | Mg | 5 | Staurosporine | | FYN[isoform a] | MSA | Srctide | 1000 | 36 | 50 | Mg | 5 | Staurosporine | | FYN[isoform b] | MSA | Srctide | 1000 | 20 | 25 | Mg | 5 | Staurosporine | | GSK3α | MSA | CREBtide-p | 1000 | 12 | 10 | Mg | 5 | Staurosporine | | GSK3β | MSA | CREBtide-p | 1000 | 9.1 | 10 | Mg | 5 | Staurosporine | | | | Substrate | | ATP | (μΜ) | Me | etal | Desitive control | |-----------------------------|----------|---------------------------------|------|-----|-------|------|------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | Haspin | MSA | Histone H3 peptide | 1000 | 140 | 150 | Mg | 5 | Staurosporine | | HCK | MSA | Srctide | 1000 | 11 | 10 | Mg | 5 | Staurosporine | | HER2 | MSA | Srctide | 1000 | 3.5 | 5 | Mn | 5 | Staurosporine | | HER4 | MSA | Srctide | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | HGK | MSA | Moesin-derived peptide | 1000 | 9.4 | 10 | Mg | 5 | Staurosporine | | HIPK1 | MSA | DYRKtide-F | 1000 | 4.4 | 5 | Mg | 5 | Staurosporine | | HIPK2 | MSA | DYRKtide-F | 1000 | 5.9 | 5 | Mg | 5 | Staurosporine | | HIPK3 | MSA | DYRKtide-F | 1000 | 7.3 | 5 | Mg | 5 | Staurosporine | | HIPK4 | MSA | DYRKtide-F | 1000 | 7.0 | 5 | Mg | 5 | Staurosporine | | HPK1 | MSA | S6K2 peptide | 1000 | 22 | 25 | Mg | 1.25 | K252a | | IGF1R | MSA | IRS1 | 1000 | 63 | 75 | Mg | 5 | Staurosporine | | ΙΚΚα | IMAP | IκBα peptide | 100 | 41 | 40 | Mg | 10 | Staurosporine | | ІККВ | MSA | Modified IκBα-derived peptide | 1000 | 16 | 25 | Mg | 5 | Staurosporine | | IKKε ¹⁾ | MSA | ΙκΒα peptide | 1000 | 9.5 | 10 | Mg | 5 | Staurosporine | | INSR | MSA | IRS1 | 1000 | 58 | 50 | Mg | 5 | Staurosporine | | IRAK1 | IMAP | SRPKtide | 100 | 27 | 25 | Mg | 2.5 | Staurosporine | | IRAK4 ¹⁾ | MSA | IRAK1 peptide | 1000 | 920 | 1000 | Mg | 5 | Staurosporine | | IRR | MSA | IRS1 | 1000 | 64 | 75 | Mg | 5 | Staurosporine | | ITK | MSA | Srctide | 1000 | 6.1 | 10 | Mg | 5 | Staurosporine | | JAK1 ¹⁾⁶⁾ | MSA | JAK1 substrate peptide | 1000 | 68 | 75 | Mg | 5 | Staurosporine | | JAK2 | MSA | Srctide | 1000 | 13 | 10 | Mg | 5 | Staurosporine | | JAK3 | MSA | Srctide | 1000 | 3.5 | 5 | Mg | 5 | Staurosporine | | JNK1 | MSA | Modified Erktide | 1000 | 29 | 100 | Mg | 5 | K252a | | JNK2 | MSA | Modified Erktide | 1000 | 21 | 50 | Mg | 5 | K252a | | JNK3 | MSA | Modified Erktide | 1000 | 6.0 | 25 | Mg | 5 | K252a | | KDR | MSA | CSKtide | 1000 | 74 | 75 | Mg | 5 | Staurosporine | | KIT ⁶⁾ | MSA | Srctide | 1000 | 370 | 400 | Mg | 5 | Staurosporine | | KIT[D816E] ⁶⁾ | MSA | Srctide | 1000 | 40 | 50 | Mg | 5 | Staurosporine | | KIT[D816V] ⁶⁾ | MSA | Srctide | 1000 | 14 | 10 | Mg | 5 | Staurosporine | | KIT[D816Y] ⁶⁾ | MSA | Srctide | 1000 | 22 | 25 | Mg | 5 | Staurosporine | | KIT[T670I] ⁶⁾ | MSA | Srctide | 1000 | 100 | 100 | Mg | 5 | Staurosporine | | KIT[V560G] ⁶⁾ | MSA | Srctide | 1000 | 110 | 250 | Mg | 5 | Staurosporine | | KIT[V654A] ⁶⁾ | MSA | Srctide | 1000 | 220 | 250 | Mg | 5 | Staurosporine | | LATS1/MOBKL1A ¹⁾ | MSA | SGKtide | 1000 | 23 | 25 | Mg | 5 | Staurosporine | | LATS2/MOBKL1A ¹⁾ | MSA | SGKtide | 1000 | 38 | 50 | Mg | 5 | Staurosporine | | LCK | MSA | Srctide | 1000 | 14 | 10 | Mg | 5 | Staurosporine | | LOK ¹⁾ | MSA | Moesin-derived peptide | 1000 | 100 | 100 | Mg | 5 | Staurosporine | | LTK | MSA | Srctide | 1000 | 49 | 50 | Mg | 5 | Staurosporine | | LYNa | MSA | Srctide | 1000 | 14 | 10 | Mg | 5 | Staurosporine | | LYNb | MSA | Srctide | 1000 | 18 | 25 | Mg | 5 | Staurosporine | | MAP4K2 | MSA | S6K2 peptide | 1000 | 93 | 100 | Mg | 5 | Staurosporine | | MAPKAPK2 | MSA | GS peptide | 1000 | 3.6 | 5 | Mg | 5 | Staurosporine | | MAPKAPK3 | MSA | GS peptide | 1000 | 13 | 10 | Mg | 5 | K252a | | MAPKAPK5 | MSA | GS peptide | 1000 | 12 | 10 | Mg | 5 | Staurosporine | | MARK1 | MSA | CHKtide | 1000 | 8.0 | 10 | Mg | 5 | Staurosporine | | MARK2 | MSA | CHKtide | 1000 | 8.8 | 10 | Mg | 5 | Staurosporine | | MARK3 | MSA | CHKtide | 1000 | 5.0 | 5 | Mg | 5 | Staurosporine | | | | Substrate | | ATP | (μΜ) | Me | etal | Positive control | |-----------------------------|----------|------------------------|------|------|-------|--------|------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | MARK4 | MSA | CHKtide | 1000 | 12 | 10 | Mg | 5 | Staurosporine | | MELK ¹⁾ | MSA | GS peptide | 1000 | 38 | 50 | Mg | 5 | Staurosporine | | MER | MSA | CSKtide | 1000 | 36 | 50 | Mg | 5 | Staurosporine | | MET | MSA | Srctide | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | MET[D1228H] | MSA | Srctide | 1000 | 25 | 25 | Mg | 5 | Staurosporine | | MET[M1250T] | MSA | Srctide | 1000 | 17 | 25 | Mg | 5 | Staurosporine | | MET[Y1235D] | MSA | Srctide | 1000 | 71 | 75 | Mg | 5 | Staurosporine | | MINK ¹⁾ | MSA | Modified Erktide | 1000 | 16 | 50 | Mg | 5 | K252a | | MNK1 | MSA | RS peptide | 1000 | 460 | 450 | Mg | 5 | Staurosporine | | MNK2 | MSA | RS peptide | 1000 | 110 | 100 | Mg | 5 | Staurosporine | | MRCKα ¹⁾ | MSA | DAPK1tide | 1000 | 0.45 | 1 | Mg | 5 | Staurosporine | | MRCKβ | MSA | DAPK1tide | 1000 | 0.67 | 1 | Mg | 5 | Staurosporine | | MSK1 | MSA | Crosstide | 1000 | 13 | 10 | Mg | 5 | Staurosporine | | MSK2 ¹⁾ | MSA | Crosstide | 1000 | 40 | 50 | Mg | 5 | Staurosporine | | MSSK1 ¹⁾ | MSA | DYRKtide-F | 1000 | 56 | 50 | Mg | 5 | K252a | | MST1 ¹⁾²⁾ | MSA | IRS1 | 1000 | 50 | 50 | Mg | 5 | Staurosporine | | MST2 ¹⁾⁷⁾ | MSA | IRS1 | 1000 | 69 | 75 | Mg | 5 | Staurosporine | | MST3 ¹⁾ | MSA | Moesin-derived peptide | 1000 | 66 | 75 | Mg | 5 | Staurosporine | | MST4 ¹⁾ | MSA | Moesin-derived peptide | 1000 | 76 | 75 | Mg | 5 | Staurosporine | | MUSK ¹⁾ | MSA | CSKtide | 1000 | 14 | 10 | Mg, Mn | 5, 1 | Staurosporine | | NDR1 ¹⁾ | MSA | SGKtide | 1000 | 12 | 10 | Mg | 5 | Staurosporine | | NDR2 ¹⁾ | MSA | SGKtide | 1000 | 7.6 | 10 | Mg | 5 | Staurosporine | | NEK1 ¹⁾ | MSA | CDK7 peptide | 1000 | 64 | 75 | Mg | 5 | Staurosporine | | NEK2 | MSA | CDK7 peptide | 1000 | 65 | 75 | Mg | 5 | Staurosporine | | NEK4 | MSA | GS peptide | 1000 | 51 | 50 | Mg | 5 | Staurosporine | | NEK6 ¹⁾ | MSA | CDK7 peptide | 1000 | 69 | 75 | Mg | 5 | PKR Inhibitor | | NEK7 ¹⁾ | MSA | CDK7 peptide | 1000 | 40 | 50 | Mg | 5 | PKR Inhibitor | | NEK9 ¹⁾ | MSA | CDK7 peptide | 1000 | 190 | 200 | Mg | 5 | Staurosporine | | NIM1K | MSA | CHKtide | 1000 | 21 | 25 | Mg | 5 | Staurosporine | | NuaK1 | MSA | CHKtide | 1000 | 59 | 50 | Mg | 5 | Staurosporine | | NuaK2 | MSA | CHKtide | 1000 | 26 | 25 | Mg | 5 | Staurosporine | | p38α | MSA | Modified Erktide | 1000 | 150 | 150 | Mg | 5 | SB202190 | | p38β | MSA | Modified Erktide | 1000 | 63 | 75 | Mg | 5 | SB202190 | | p38γ | MSA | Modified Erktide | 1000 | 13 | 10 | Mg | 5 | Staurosporine | | p38δ | MSA | Modified Erktide | 1000 | 5.8 | 5 | Mg | 5 | Staurosporine | | p70S6K | MSA | S6K2 peptide | 1000 | 14 | 10 | Mg | 5 | Staurosporine | | p70S6Kβ | MSA | S6K2 peptide | 1000 | 3.3 | 5 | Mg | 5 | Staurosporine | | PAK1 | MSA | LIMKtide | 1000 | 300 | 300 | Mg | 5 | Staurosporine | | PAK2 | MSA | DAPK1tide | 1000 | 81 | 100 | Mg | 5 | Staurosporine | | PAK4 ¹⁾ | MSA | SGKtide | 1000 | 2.5 | 5 | Mg | 5 | Staurosporine | | PAK5 | MSA | DAPK1tide | 1000 | 1.9 | 1 | Mg | 5 | Staurosporine | | PAK6 ¹⁾ | MSA | SGKtide | 1000 | 3.7 | 5 | Mg | 5 | Staurosporine | | PASK ¹⁾ | MSA | GS peptide | 1000 | 9.7 | 10 | Mg | 5 | Staurosporine | | PBK ¹⁾ | MSA | Histone H3 peptide | 1000 | 33 | 50 | Mg | 5 | Staurosporine | | PDGFRα | MSA | CSKtide | 1000 | 28 | 25 | Mg | 5 | Staurosporine | | PDGFRα[D842V] | MSA | CSKtide | 1000 | 21 | 25 | Mg | 5 | Staurosporine | | PDGFRα[T674I] ¹⁾ | MSA | CSKtide | 1000 | 11 | 10 | Mg | 5 | Staurosporine | | PDGFRα[V561D] | MSA | CSKtide | 1000 | 35 | 50 | Mg | 5 | Staurosporine | | PDGFRβ | MSA | CSKtide | 1000 | 23 | 25 | Mg | 5 | Staurosporine | | 17. | DI (C | Substrate | ; | ATP | (μΜ) | Me | etal | D ''' 1 | |-----------------------|----------|--------------------|-----------------|-----|-------|--------|---------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | PDHK2 ¹⁾ | MSA | PDHKtide | 1000 | 28 | 25 | Mg, K | 5, 3 | VER-246608 | | PDHK4 ¹⁾ | MSA | PDHKtide | 1000 | 19 | 25 | Mg, K | 5, 25 | VER-246608 | | PDK1 ¹⁾⁸⁾ | MSA | T308tide | 1000 | 9.6 | 10 | Mg | 5 | Staurosporine | | PEK | IMAP | SRPKtide | 100 | 13 | 10 | Mg | 5 | Staurosporine | | PGK ¹⁾⁴⁾ | MSA | Kemptide | 1000 | 8.2 | 10 | Mg | 5 | Staurosporine | | PHKG1 ¹⁾ | MSA | GS peptide | 1000 | 71 | 75 | Mg | 5 | Staurosporine | | PHKG2 | MSA | GS peptide | 1000 | 8.1 | 10 | Mg | 5 | Staurosporine | | PIK3CA/PIK3R1 | ADP-Glo | PI(4,5)P2,
POPS | 10000,
5000 | 89 | 100 | Mg | 5 | PI-103 | | PIK3CA[E542K]/PIK3R1 | ADP-Glo | PI(4,5)P2,
POPS | 10000,
5000 | 42 | 50 | Mg | 5 | PI-103 | | PIK3CA[E545K]/PIK3R1 | ADP-Glo | PI(4,5)P2,
POPS | 10000,
5000 | 44 | 50 | Mg | 5 | PI-103 | | PIK3CA[H1047R]/PIK3R1 | ADP-Glo | PI(4,5)P2,
POPS | 10000,
5000 | 78 | 75 | Mg | 5 | PI-103 | | PIK3CA[P539R]/PIK3R1 | ADP-Glo | PI(4,5)P2,
POPS | 10000,
5000 | 37 | 50 | Mg | 5 | PI-103 | |
PIK3CA[R88Q]/PIK3R1 | ADP-Glo | PI(4,5)P2,
POPS | 10000,
5000 | 42 | 50 | Mg | 5 | PI-103 | | PIK3CB/PIK3R1 | ADP-Glo | PI(4,5)P2,
POPS | 10000,
5000 | 88 | 100 | Mg | 5 | PI-103 | | PIK3CD/PIK3R1 | ADP-Glo | PI(4,5)P2,
POPS | 10000,
5000 | 37 | 50 | Mg | 5 | PI-103 | | PIKFYVE | ADP-Glo | PI(3)P,
POPS | 10000,
20000 | 36 | 50 | Mg | 5 | AG-183 | | PIM1 | MSA | S6K2 peptide | 1000 | 640 | 500 | Mg | 5 | Staurosporine | | PIM2 ¹⁾ | MSA | S6K2 peptide | 1000 | 4.0 | 5 | Mg | 5 | Staurosporine | | PIM3 | MSA | S6K2 peptide | 1000 | 130 | 150 | Mg | 5 | Staurosporine | | PIP4K2A | ADP-Glo | PI(5)P,
POPS | 10000,
20000 | 20 | 25 | Mg | 5 | AG-183 | | PIP4K2B | ADP-Glo | PI(5)P,
POPS | 10000,
20000 | 18 | 25 | Mn | 0.25 | AG-183 | | PIP5K1A | ADP-Glo | PI(4)P,
POPS | 10000,
20000 | 28 | 25 | Mg | 5 | AG-183 | | PIP5K1B | ADP-Glo | PI(4)P,
POPS | 10000,
20000 | 95 | 100 | Mg | 5 | AG-183 | | PIP5K1C | ADP-Glo | PI(4)P,
POPS | 10000,
20000 | 33 | 50 | Mg | 5 | AG-183 | | PIP5KL1 | ADP-Glo | PI(4)P,
POPS | 10000,
20000 | 1.0 | 1 | Mg | 5 | AG-183 | | PKACα | MSA | Kemptide | 1000 | 2.6 | 5 | Mg | 5 | Staurosporine | | РКАСβ | MSA | Kemptide | 1000 | 4.7 | 5 | Mg | 5 | Staurosporine | | PKACγ ¹⁾ | MSA | Kemptide | 1000 | 4.5 | 5 | Mg | 5 | Staurosporine | | PKCα ⁵⁾ | MSA | PKC peptide | 1000 | 36 | 50 | Mg, Ca | 5, 0.05 | Staurosporine | | PKCβ1 ⁵⁾ | MSA | PKC peptide | 1000 | 79 | 75 | Mg, Ca | 5, 0.05 | Staurosporine | | PKCβ2 ⁵⁾ | MSA | PKC peptide | 1000 | 41 | 50 | Mg, Ca | 5, 0.05 | Staurosporine | | PKCγ ⁵⁾ | MSA | PKC peptide | 1000 | 74 | 75 | Mg, Ca | 5, 0.05 | Staurosporine | | PKCδ ⁵⁾ | MSA | PKC peptide | 1000 | 26 | 25 | Mg | 5 | Staurosporine | | PKCε ⁵⁾ | MSA | PKC peptide | 1000 | 16 | 25 | Mg | 5 | Staurosporine | | РКСζ | MSA | PKC peptide | 1000 | 11 | 10 | Mg | 5 | Staurosporine | | PKCη ⁵⁾ | MSA | PKC peptide | 1000 | 36 | 50 | Mg | 5 | Staurosporine | | PKC0 ⁵⁾ | MSA | PKC peptide | 1000 | 18 | 25 | Mg | 5 | Staurosporine | | PKCι | MSA | PKC peptide | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | PKD1 | MSA | GS peptide | 1000 | 25 | 25 | Mg | 5 | Staurosporine | | PKD2 | MSA | GS peptide | 1000 | 26 | 25 | Mg | 5 | Staurosporine | | PKD3 | MSA | GS peptide | 1000 | 34 | 50 | Mg | 5 | Staurosporine | | | | Substrate | | ATP | (μΜ) | Me | etal | | |-----------------------|----------|------------------------|------|-----|-------|------|------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | PKN1 | IMAP | S6K peptide | 100 | 19 | 25 | Mg | 1 | Staurosporine | | PKR | IMAP | SRPKtide | 100 | 13 | 10 | Mg | 5 | Staurosporine | | PLK1 ¹⁾ | MSA | CDC25ctide | 1000 | 5.6 | 5 | Mg | 5 | GW843682X | | PLK2 | IMAP | CHK2 peptide | 50 | 30 | 30 | Mg | 10 | GW843682X | | PLK3 | MSA | CDC25ctide | 1000 | 6.8 | 5 | Mg | 5 | GW843682X | | PRKX ¹⁾ | MSA | Kemptide | 1000 | 20 | 25 | Mg | 5 | Staurosporine | | PYK2 | MSA | Blk/Lyntide | 1000 | 56 | 50 | Mg | 5 | Staurosporine | | QIK | MSA | AMARA peptide | 1000 | 42 | 50 | Mg | 5 | Staurosporine | | RET | MSA | CSKtide | 1000 | 7.5 | 10 | Mg | 5 | Staurosporine | | RET[G691S] | MSA | CSKtide | 1000 | 13 | 10 | Mg | 5 | Staurosporine | | RET[M918T] | MSA | CSKtide | 1000 | 4.2 | 5 | Mg | 5 | Staurosporine | | RET[S891A] | MSA | CSKtide | 1000 | 11 | 10 | Mg | 5 | Staurosporine | | RET[Y791F] | MSA | CSKtide | 1000 | 29 | 25 | Mg | 5 | Staurosporine | | ROCK1 | MSA | LIMKtide | 1000 | 3.1 | 5 | Mg | 5 | Staurosporine | | ROCK2 | MSA | LIMKtide | 1000 | 7.4 | 5 | Mg | 5 | Staurosporine | | RON | MSA | Srctide | 1000 | 27 | 25 | Mg | 5 | Staurosporine | | ROS | MSA | IRS1 | 1000 | 37 | 50 | Mg | 5 | Staurosporine | | | | S6K peptide | | | | | | • | | RSK1 | MSA | (N-FL) | 1000 | 21 | 25 | Mg | 5 | Staurosporine | | RSK2 | MSA | S6K peptide
(N-FL) | 1000 | 14 | 10 | Mg | 5 | Staurosporine | | RSK3 | MSA | S6K peptide
(N-FL) | 1000 | 9.9 | 10 | Mg | 5 | Staurosporine | | RSK4 | MSA | S6K peptide
(N-FL) | 1000 | 20 | 25 | Mg | 5 | Staurosporine | | SGK | MSA | SGKtide | 1000 | 52 | 50 | Mg | 5 | Staurosporine | | SGK2 | MSA | SGKtide | 1000 | 58 | 50 | Mg | 5 | Staurosporine | | SGK3 | MSA | SGKtide | 1000 | 17 | 25 | Mg | 5 | Staurosporine | | SIK ¹⁾ | MSA | AMARA peptide | 1000 | 47 | 50 | Mg | 5 | Staurosporine | | skMLCK ³⁾ | MSA | MLCtide | 1000 | 820 | 1000 | Mg | 5 | Staurosporine | | SLK ¹⁾ | MSA | Moesin-derived peptide | 1000 | 36 | 50 | Mg | 5 | Staurosporine | | SPHK1 | MSA | Sphingosine | 1000 | 20 | 25 | Mg | 5 | PF-543 | | SPHK2 | MSA | Sphingosine | 1000 | 620 | 600 | Mg | 5 | PF-543 | | SRC | MSA | Srctide | 1000 | 31 | 50 | Mg | 5 | Staurosporine | | SRM | MSA | Blk/Lyntide | 1000 | 38 | 50 | Mg | 5 | Staurosporine | | SRPK1 | IMAP | SRPKtide | 100 | 200 | 100 | Mg | 10 | Staurosporine | | SRPK2 ¹⁾ | MSA | DYRKtide-F | 1000 | 14 | 10 | Mg | 5 | Staurosporine | | SYK | MSA | Blk/Lyntide | 1000 | 59 | 50 | Mg | 5 | Staurosporine | | TAK1-TAB1 | MSA | LRRKtide | 1000 | 37 | 50 | Mg | 1.25 | Staurosporine | | TAOK2 ¹⁾⁷⁾ | MSA | TAOKtide | 1000 | 39 | 50 | Mg | 5 | Staurosporine | | TBK1 | MSA | CKtide | 1000 | 21 | 25 | Mg | 5 | Staurosporine | | TEC | MSA | Srctide | 1000 | 55 | 50 | Mg | 5 | Staurosporine | | TIE2 | MSA | Blk/Lyntide | 1000 | 94 | 100 | Mg | 5 | Staurosporine | | TNIK | MSA | Moesin-derived peptide | 1000 | 16 | 25 | Mg | 5 | Staurosporine | | TNK1 ¹⁾ | MSA | CSKtide | 1000 | 71 | 75 | Mg | 5 | Staurosporine | | TRKA | MSA | CSKtide | 1000 | 65 | 75 | Mg | 5 | Staurosporine | | TRKB | MSA | Srctide | 1000 | 80 | 75 | Mg | 5 | Staurosporine | | TRKC | MSA | Srctide | 1000 | 47 | 50 | Mg | 5 | Staurosporine | | TSSK1 | MSA | GS peptide | 1000 | 11 | 10 | Mg | 5 | Staurosporine | | TSSK2 ¹⁾ | MSA | GS peptide | 1000 | 8.8 | 10 | Mg | 5 | Staurosporine | | TSSK3 ¹⁾ | MSA | GS peptide | 1000 | 45 | 50 | Mg | 5 | Staurosporine | | Kinase | Dlotforms | Substrate | | ATP | (µM) | Me | etal | Positive control | |--------------------|-----------|-------------|------|-----|-------|--------|------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | TXK ¹⁾ | MSA | Srctide | 1000 | 110 | 100 | Mg | 5 | Staurosporine | | TYK2 ¹⁾ | MSA | Srctide | 1000 | 18 | 25 | Mg | 5 | Staurosporine | | TYRO3 | MSA | CSKtide | 1000 | 80 | 75 | Mg | 5 | Staurosporine | | WNK1 ¹⁾ | MSA | SPAKtide | 1000 | 140 | 150 | Mg, Mn | 5, 3 | K252a | | WNK2 ¹⁾ | MSA | SPAKtide | 1000 | 48 | 50 | Mg, Mn | 5, 3 | K252a | | WNK3 ¹⁾ | MSA | SPAKtide | 1000 | 48 | 50 | Mg, Mn | 5, 3 | K252a | | YES | MSA | Srctide | 1000 | 13 | 10 | Mg | 5 | Staurosporine | | YES[T348I] | MSA | Srctide | 1000 | 8.5 | 10 | Mg | 5 | Staurosporine | | ZAP70 | MSA | Blk/Lyntide | 1000 | 3.3 | 5 | Mg, Mn | 5, 1 | Staurosporine | # ATP 1mM | Kinase | Dlotform | Substrate | | ATP | (µM) | Me | etal | Docitive control | |------------------------|----------|------------------------|------|-----|-------|------|------|------------------| | Killase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | ABL | MSA | ABLtide | 1000 | 16 | 1000 | Mg | 5 | Staurosporine | | ABL[E255K] | MSA | ABLtide | 1000 | 17 | 1000 | Mg | 5 | Staurosporine | | ABL[T315I] | MSA | ABLtide | 1000 | 4.0 | 1000 | Mg | 5 | Staurosporine | | ACK ¹⁾ | MSA | WASP peptide | 1000 | 97 | 1000 | Mg | 5 | Staurosporine | | AKT1 | MSA | Crosstide | 1000 | 31 | 1000 | Mg | 5 | Staurosporine | | ALK | MSA | Srctide | 1000 | 57 | 1000 | Mg | 5 | Staurosporine | | ALK[C1156Y] | MSA | Srctide | 1000 | 64 | 1000 | Mg | 5 | Staurosporine | | ALK[F1174L] | MSA | Srctide | 1000 | 49 | 1000 | Mg | 5 | Staurosporine | | ALK[G1202R] | MSA | Srctide | 1000 | 31 | 1000 | Mg | 5 | Staurosporine | | ALK[G1269A] | MSA | Srctide | 1000 | 27 | 1000 | Mg | 5 | Staurosporine | | ALK[L1196M] | MSA | Srctide | 1000 | 57 | 1000 | Mg | 5 | Staurosporine | | ALK[R1275Q] | MSA | Srctide | 1000 | 84 | 1000 | Mg | 5 | Staurosporine | | ALK[T1151_L1152insT] | MSA | Srctide | 1000 | 110 | 1000 | Mg | 5 | Staurosporine | | EML4-ALK ¹⁾ | MSA | Srctide | 1000 | 43 | 1000 | Mg | 5 | Staurosporine | | NPM1-ALK | MSA | Srctide | 1000 | 57 | 1000 | Mg | 5 | Staurosporine | | ΑΜΡΚα1/β1/γ1 | MSA | SAMS peptide | 1000 | 130 | 1000 | Mg | 5 | Staurosporine | | ARG | MSA | ABLtide | 1000 | 24 | 1000 | Mg | 5 | Staurosporine | | AurA | MSA | Kemptide | 1000 | 27 | 1000 | Mg | 5 | Staurosporine | | AurB/INCENP | MSA | Kemptide | 1000 | 16 | 1000 | Mg | 5 | Staurosporine | | AurC | MSA | Kemptide | 1000 | 24 | 1000 | Mg | 5 | Staurosporine | | AXL | MSA | CSKtide | 1000 | 32 | 1000 | Mg | 5 | Staurosporine | | BLK | MSA | Srctide | 1000 | 62 | 1000 | Mg | 5 | Staurosporine | | BMX | MSA | Srctide | 1000 | 75 | 1000 | Mg | 5 | Staurosporine | | BRK ¹⁾ | MSA | Blk/Lyntide | 1000 | 250 | 1000 | Mg | 5 | Staurosporine | | BRSK1 | MSA | CHKtide | 1000 | 30 | 1000 | Mg | 5 | Staurosporine | | BTK | MSA | Srctide | 1000 | 22 | 1000 | Mg | 5 | Staurosporine | | BTK[C481S] | MSA | Srctide | 1000 | 27 | 1000 | Mg | 5 | Staurosporine | | CaMK2α ³⁾ | MSA | GS peptide | 1000 | 33 | 1000 | Mg | 5 | Staurosporine | | CaMK2β ³⁾ | MSA | GS peptide | 1000 | 19 | 1000 | Mg | 5 | Staurosporine | | CaMK2γ ³⁾ | MSA | GS peptide | 1000 | 23 | 1000 | Mg | 5 | Staurosporine | | CaMK2δ ³⁾ | MSA | GS peptide | 1000 | 6.3 | 1000 | Mg | 5 | Staurosporine | | CaMK4 ³⁾ | MSA | GS peptide | 1000 | 20 | 1000 | Mg | 5 | Staurosporine | | CDC7/ASK ¹⁾ | MSA | MCM2 peptide | 1000 | 2.8 | 1000 | Mg | 10 | Staurosporine | | CDK1(CDC2)/CycB1 | MSA | Modified
Histone H1 | 1000 | 34 | 1000 | Mg | 5 | Staurosporine | | CDK2/CycA2 | MSA | Modified
Histone H1 | 1000 | 27 | 1000 | Mg | 5 | Staurosporine | | CDK2/CycE1 | MSA | Modified
Histone H1 | 1000 | 130 | 1000 | Mg | 5 | Staurosporine | | | | Substrate | | ATP | (µM) | Me | etal | | |------------------------------|----------|------------------|------|------|-------|--------
------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | CDK4/CycD3 ¹⁾ | MSA | DYRKtide-F | 1000 | 200 | 1000 | Mg | 5 | Staurosporine | | CDK5/p25 | MSA | Modified | 1000 | 10 | 1000 | Mg | 5 | Staurosporine | | | | Histone H1 | | | | Ü | | 1 | | CDK6/CycD3 ¹⁾ | MSA | DYRKtide-F | 1000 | 330 | 1000 | Mg | 5 | Staurosporine | | CDK7/CycH/MAT1 ¹⁾ | MSA | CTD3 peptide | 1000 | 32 | 1000 | Mg | 5 | Staurosporine | | CDK9/CycT1 ¹⁾ | MSA | CDK9 substrate | 1000 | 9.4 | 1000 | Mg | 5 | Staurosporine | | CHK1 | MSA | CHKtide | 1000 | 50 | 1000 | Mg | 5 | Staurosporine | | CHK2 | MSA | CHKtide | 1000 | 51 | 1000 | Mg | 5 | Staurosporine | | CK1α ¹⁾ | MSA | CKtide | 1000 | 4.1 | 1000 | Mg | 5 | 5-Iodotubercidin | | CK18 | MSA | CKtide | 1000 | 7.7 | 1000 | Mg | 5 | 5-Iodotubercidin | | CK1ε ¹⁾ | MSA | CKtide | 1000 | 16 | 1000 | Mg | 5 | 5-Iodotubercidin | | CK2α1/β | MSA | CK2tide | 1000 | 2.9 | 1000 | Mg | 5 | TBB | | CLK1 | MSA | DYRKtide-F | 1000 | 11 | 1000 | Mg | 5 | Staurosporine | | CLK2 | MSA | DYRKtide-F | 1000 | 140 | 1000 | Mg | 5 | Staurosporine | | CSK ¹⁾ | MSA | Srctide | 1000 | 4.8 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | DAPK1 | MSA | DAPK1tide | 1000 | 1.1 | 1000 | Mg | 5 | Staurosporine | | DDR1 ¹⁾ | MSA | IRS1 | 1000 | 94 | 1000 | Mg | 5 | Staurosporine | | DDR2 ¹⁾ | MSA | IRS1 | 1000 | 38 | 1000 | Mg | 5 | Staurosporine | | DYRK1A | MSA | DYRKtide-F | 1000 | 16 | 1000 | Mg | 5 | Staurosporine | | DYRK1B | MSA | DYRKtide-F | 1000 | 59 | 1000 | Mg | 5 | Staurosporine | | DYRK2 | MSA | DYRKtide-F | 1000 | 7.7 | 1000 | Mg | 5 | Staurosporine | | DYRK3 | MSA | DYRKtide-F | 1000 | 6.8 | 1000 | Mg | 5 | Staurosporine | | EGFR | MSA | Srctide | 1000 | 2.7 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[C797S/L858R] | MSA | Srctide | 1000 | 4.1 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[d746-750] | MSA | Srctide | 1000 | 19 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[d746-750/C797S] | MSA | Srctide | 1000 | 8.2 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[d746-750/T790M] | MSA | Srctide | 1000 | 5.4 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[d746-750/T790M/C797S] | MSA | Srctide | 1000 | 1.8 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[D770_N771insNPG] | MSA | Srctide | 1000 | 2.3 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[L858R] | MSA | Srctide | 1000 | 9.8 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[L861Q] | MSA | Srctide | 1000 | 7.5 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[T790M] | MSA | Srctide | 1000 | 0.90 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[T790M/C797S/L858R] | MSA | Srctide | 1000 | 0.85 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EGFR[T790M/L858R] | MSA | Srctide | 1000 | 1.9 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | EPHA1 | MSA | Blk/Lyntide | 1000 | 22 | 1000 | Mg | 5 | Staurosporine | | EPHA2 | MSA | Blk/Lyntide | 1000 | 67 | 1000 | Mg | 5 | Staurosporine | | ЕРНА3 | MSA | Blk/Lyntide | 1000 | 170 | 1000 | Mg | 5 | Staurosporine | | EPHA4 | MSA | Blk/Lyntide | 1000 | 52 | 1000 | Mg | 5 | Staurosporine | | EPHA5 | MSA | Blk/Lyntide | 1000 | 56 | 1000 | Mg | 5 | Staurosporine | | ЕРНА6 | MSA | Blk/Lyntide | 1000 | 27 | 1000 | Mg | 5 | Staurosporine | | ЕРНА7 | MSA | Blk/Lyntide | 1000 | 58 | 1000 | Mg | 5 | Staurosporine | | ЕРНА8 | MSA | Blk/Lyntide | 1000 | 69 | 1000 | Mg | 5 | Staurosporine | | EPHB1 | MSA | Blk/Lyntide | 1000 | 29 | 1000 | Mg | 5 | Staurosporine | | EPHB2 | MSA | Blk/Lyntide | 1000 | 86 | 1000 | Mg | 5 | Staurosporine | | EPHB3 | MSA | Blk/Lyntide | 1000 | 49 | 1000 | Mg | 5 | Staurosporine | | EPHB4 | MSA | Blk/Lyntide | 1000 | 56 | 1000 | Mg | 5 | Staurosporine | | Erk1 | MSA | Modified Erktide | 1000 | 34 | 1000 | Mg | 5 | K252a | | Erk2 | MSA | Modified Erktide | 1000 | 33 | 1000 | Mg | 5 | K252a | | FAK ¹⁾ | MSA | Blk/Lyntide | 1000 | 25 | 1000 | Mg | 5 | Staurosporine | | FER | MSA | Srctide | 1000 | 26 | 1000 | Mg | 5 | Staurosporine | | FES | MSA | Srctide | 1000 | 43 | 1000 | Mg | 5 | Staurosporine | | Kinase | | Substrate | | ATP | (μΜ) | Me | etal | | |--------------------------|----------|-------------------------------------|------|-----|-------|------|------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | FGFR1 | MSA | CSKtide | 1000 | 89 | 1000 | Mg | 5 | Staurosporine | | FGFR1[V561M] | MSA | CSKtide | 1000 | 33 | 1000 | Mg | 5 | Staurosporine | | FGFR2 | MSA | CSKtide | 1000 | 66 | 1000 | Mg | 5 | Staurosporine | | FGFR2[V564I] | MSA | CSKtide | 1000 | 21 | 1000 | Mg | 5 | Staurosporine | | FGFR3 | MSA | CSKtide | 1000 | 43 | 1000 | Mg | 5 | Staurosporine | | FGFR3[K650E] | MSA | CSKtide | 1000 | 41 | 1000 | Mg | 5 | Staurosporine | | FGFR3[K650M] | MSA | CSKtide | 1000 | 17 | 1000 | Mg | 5 | Staurosporine | | FGFR3[V555L] | MSA | CSKtide | 1000 | 29 | 1000 | Mg | 5 | Staurosporine | | FGFR3[V555M] | MSA | CSKtide | 1000 | 37 | 1000 | Mg | 5 | Staurosporine | | FGFR4 | MSA | CSKtide | 1000 | 230 | 1000 | Mg | 5 | Staurosporine | | FGFR4[N535K] | MSA | CSKtide | 1000 | 30 | 1000 | Mg | 5 | Staurosporine | | FGFR4[V550E] | MSA | CSKtide | 1000 | 210 | 1000 | Mg | 5 | Staurosporine | | FGFR4[V550L] | MSA | CSKtide | 1000 | 160 | 1000 | Mg | 5 | Staurosporine | | FGR | MSA | Srctide | 1000 | 34 | 1000 | Mg | 5 | Staurosporine | | FLT1 | MSA | CSKtide | 1000 | 140 | 1000 | Mg | 5 | Staurosporine | | FLT3 | MSA | Srctide | 1000 | 94 | 1000 | Mg | 5 | Staurosporine | | FLT4 | MSA | CSKtide | 1000 | 72 | 1000 | Mg | 5 | Staurosporine | | FMS | MSA | Srctide | 1000 | 26 | 1000 | Mg | 5 | Staurosporine | | FRK | MSA | Srctide | 1000 | 62 | 1000 | Mg | 5 | Staurosporine | | FYN[isoform a] | MSA | Srctide | 1000 | 36 | 1000 | Mg | 5 | Staurosporine | | FYN[isoform b] | MSA | Srctide | 1000 | 20 | 1000 | Mg | 5 | Staurosporine | | GSK3α | MSA | CREBtide-p | 1000 | 12 | 1000 | Mg | 5 | Staurosporine | | GSK3β | MSA | CREBtide-p | 1000 | 9.1 | 1000 | Mg | 5 | Staurosporine | | HCK | MSA | Srctide | 1000 | 11 | 1000 | Mg | 5 | Staurosporine | | HER2 | MSA | Srctide | 1000 | 3.5 | 1000 | Mn | 5 | Staurosporine | | HER4 | MSA | Srctide | 1000 | 27 | 1000 | Mg | 5 | Staurosporine | | HGK | MSA | Moesin-derived | 1000 | 9.4 | 1000 | Mg | 5 | Staurosporine | | HIPK3 | MSA | peptide
DYRKtide-F | 1000 | 7.3 | 1000 | Mg | 5 | Staurosporine | | HIPK4 | MSA | DYRKtide-F | 1000 | 7.0 | 1000 | Mg | 5 | Staurosporine | | IGF1R | MSA | IRS1 | 1000 | 63 | 1000 | Mg | 5 | Staurosporine | | ІККВ | MSA | Modified
IκBα-derived
peptide | 1000 | 16 | 1000 | Mg | 5 | Staurosporine | | INSR | MSA | IRS1 | 1000 | 58 | 1000 | Mg | 5 | Staurosporine | | IRR | MSA | IRS1 | 1000 | 64 | 1000 | Mg | 5 | Staurosporine | | ITK | MSA | Srctide | 1000 | 6.1 | 1000 | Mg | 5 | Staurosporine | | JAK1 ¹⁾⁶⁾ | MSA | JAK1 substrate peptide | 1000 | 68 | 1000 | Mg | 5 | Staurosporine | | JAK2 | MSA | Srctide | 1000 | 13 | 1000 | Mg | 5 | Staurosporine | | JAK3 | MSA | Srctide | 1000 | 3.5 | 1000 | Mg | 5 | Staurosporine | | JNK1 | MSA | Modified Erktide | 1000 | 29 | 1000 | Mg | 5 | K252a | | JNK2 | MSA | Modified Erktide | 1000 | 21 | 1000 | Mg | 5 | K252a | | JNK3 | MSA | Modified Erktide | 1000 | 6.0 | 1000 | Mg | 5 | K252a | | KDR | MSA | CSKtide | 1000 | 74 | 1000 | Mg | 5 | Staurosporine | | KIT ⁶⁾ | MSA | Srctide | 1000 | 370 | 1000 | Mg | 5 | Staurosporine | | KIT[D816E] ⁶⁾ | MSA | Srctide | 1000 | 40 | 1000 | Mg | 5 | Staurosporine | | KIT[D816V] ⁶⁾ | MSA | Srctide | 1000 | 14 | 1000 | Mg | 5 | Staurosporine | | KIT[D816Y] ⁶⁾ | MSA | Srctide | 1000 | 22 | 1000 | Mg | 5 | Staurosporine | | KIT[T670I] ⁶⁾ | MSA | Srctide | 1000 | 100 | 1000 | Mg | 5 | Staurosporine | | KIT[V560G] ⁶⁾ | MSA | Srctide | 1000 | 110 | 1000 | Mg | 5 | Staurosporine | | KIT[V654A] ⁶⁾ | MSA | Srctide | 1000 | 220 | 1000 | Mg | 5 | Staurosporine | | | | Substrate | | ATP | (μΜ) | Me | etal | | |-----------------------------|----------|--------------------|------|-----|-------|--------|---------|------------------| | Kinase | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | LATS1/MOBKL1A ¹⁾ | MSA | SGKtide | 1000 | 23 | 1000 | Mg | 5 | Staurosporine | | LATS2/MOBKL1A ¹⁾ | MSA | SGKtide | 1000 | 38 | 1000 | Mg | 5 | Staurosporine | | LCK | MSA | Srctide | 1000 | 14 | 1000 | Mg | 5 | Staurosporine | | LTK | MSA | Srctide | 1000 | 49 | 1000 | Mg | 5 | Staurosporine | | LYNa | MSA | Srctide | 1000 | 14 | 1000 | Mg | 5 | Staurosporine | | LYNb | MSA | Srctide | 1000 | 18 | 1000 | Mg | 5 | Staurosporine | | MAPKAPK2 | MSA | GS peptide | 1000 | 3.6 | 1000 | Mg | 5 | Staurosporine | | MARK4 | MSA | CHKtide | 1000 | 12 | 1000 | Mg | 5 | Staurosporine | | MER MER | MSA | CSKtide | 1000 | 36 | 1000 | Mg | 5 | Staurosporine | | MET | MSA | Srctide | 1000 | 27 | 1000 | Mg | 5 | Staurosporine | | MET[D1228H] | MSA | Srctide | 1000 | 25 | 1000 | Mg | 5 | Staurosporine | | MET[M1250T] | MSA | Srctide | 1000 | 17 | 1000 | _ | 5 | _ | | | MSA | Srctide | | | 1000 | Mg | | Staurosporine | | MET[Y1235D] | | | 1000 | 71 | | Mg | 5 | Staurosporine | | MINK ¹⁾ | MSA | Modified Erktide | 1000 | 16 | 1000 | Mg | 5 | K252a | | MNK2 | MSA | RS peptide | 1000 | 110 | 1000 | Mg | 5 | Staurosporine | | MSK1 | MSA | Crosstide | 1000 | 13 | 1000 | Mg | 5 | Staurosporine | | MSK2 ¹⁾ | MSA | Crosstide | 1000 | 40 | 1000 | Mg | 5 | Staurosporine | | MST1 ¹⁾²⁾ | MSA | IRS1 | 1000 | 50 | 1000 | Mg | 5 | Staurosporine | | MST2 ¹⁾⁷⁾ | MSA | IRS1 | 1000 | 69 | 1000 | Mg | 5 | Staurosporine | | MUSK ¹⁾ | MSA | CSKtide | 1000 | 14 | 1000 | Mg, Mn | 5, 1 | Staurosporine | | NEK1 ¹⁾ | MSA | CDK7 peptide | 1000 | 64 | 1000 | Mg | 5 | Staurosporine | | NEK2 | MSA | CDK7 peptide | 1000 | 65 | 1000 | Mg | 5 | Staurosporine | | NEK6 ¹⁾ | MSA | CDK7 peptide | 1000 | 69 | 1000 | Mg | 5 | PKR Inhibitor | | NEK7 ¹⁾ | MSA | CDK7 peptide | 1000 | 40 | 1000 | Mg | 5 | PKR Inhibitor | | NEK9 ¹⁾ | MSA | CDK7 peptide | 1000 | 190 | 1000 | Mg | 5 | Staurosporine | | NuaK1 | MSA | CHKtide | 1000 | 59 |
1000 | Mg | 5 | Staurosporine | | NuaK2 | MSA | CHKtide | 1000 | 26 | 1000 | Mg | 5 | Staurosporine | | p38α | MSA | Modified Erktide | 1000 | 150 | 1000 | Mg | 5 | SB202190 | | p38β | MSA | Modified Erktide | 1000 | 63 | 1000 | Mg | 5 | SB202190 | | p38γ | MSA | Modified Erktide | 1000 | 13 | 1000 | Mg | 5 | Staurosporine | | р38δ | MSA | Modified Erktide | 1000 | 5.8 | 1000 | Mg | 5 | Staurosporine | | p70S6K | MSA | S6K2 peptide | 1000 | 14 | 1000 | Mg | 5 | Staurosporine | | PAK1 | MSA | LIMKtide | 1000 | 300 | 1000 | Mg | 5 | Staurosporine | | PAK2 | MSA | DAPK1tide | 1000 | 81 | 1000 | Mg | 5 | Staurosporine | | PAK5 | MSA | DAPK1tide | 1000 | 1.9 | 1000 | Mg | 5 | Staurosporine | | PASK ¹⁾ | MSA | GS peptide | 1000 | 9.7 | 1000 | Mg | 5 | Staurosporine | | PBK ¹⁾ | MSA | Histone H3 peptide | 1000 | 33 | 1000 | Mg | 5 | Staurosporine | | PDGFRα | MSA | CSKtide | 1000 | 28 | 1000 | Mg | 5 | Staurosporine | | PDGFRα[D842V] | MSA | CSKtide | 1000 | 21 | 1000 | Mg | 5 | Staurosporine | | PDGFRα[T674I] ¹⁾ | MSA | CSKtide | 1000 | 11 | 1000 | Mg | 5 | Staurosporine | | PDGFRα[V561D] | MSA | CSKtide | 1000 | 35 | 1000 | Mg | 5 | Staurosporine | | PDGFRβ | MSA | CSKtide | 1000 | 23 | 1000 | Mg | 5 | Staurosporine | | PDK1 ¹⁾⁸⁾ | MSA | T308tide | 1000 | 9.6 | 1000 | Mg | 5 | Staurosporine | | PIM1 | MSA | S6K2 peptide | 1000 | 640 | 1000 | Mg | 5 | Staurosporine | | PIM2 ¹⁾ | MSA | S6K2 peptide | 1000 | 4.0 | 1000 | Mg | 5 | Staurosporine | | PIM3 | MSA | S6K2 peptide | 1000 | 130 | 1000 | Mg | 5 | Staurosporine | | PKACα | MSA | Kemptide | 1000 | 2.6 | 1000 | Mg | 5 | Staurosporine | | РКАСβ | MSA | Kemptide | 1000 | 4.7 | 1000 | Mg | 5 | Staurosporine | | $PKC\alpha^{5)}$ | MSA | PKC peptide | 1000 | 36 | 1000 | Mg, Ca | 5, 0.05 | Staurosporine | | PKCγ ⁵⁾ | MSA | PKC peptide | 1000 | 74 | 1000 | Mg, Ca | 5, 0.05 | Staurosporine | | PKCe ⁵⁾ | MSA | PKC peptide | 1000 | 16 | 1000 | Mg | 5 | Staurosporine | | Kinase | DI «C | Substrate | | ATP (μM) | | Metal | | B 111 | |-----------------------|----------|------------------------|------|----------|-------|--------|------|------------------| | | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | PKD2 | MSA | GS peptide | 1000 | 26 | 1000 | Mg | 5 | Staurosporine | | PLK1 ¹⁾ | MSA | CDC25ctide | 1000 | 5.6 | 1000 | Mg | 5 | GW843682X | | PLK3 | MSA | CDC25ctide | 1000 | 6.8 | 1000 | Mg | 5 | GW843682X | | PYK2 | MSA | Blk/Lyntide | 1000 | 56 | 1000 | Mg | 5 | Staurosporine | | QIK | MSA | AMARA peptide | 1000 | 42 | 1000 | Mg | 5 | Staurosporine | | RET | MSA | CSKtide | 1000 | 7.5 | 1000 | Mg | 5 | Staurosporine | | RET[G691S] | MSA | CSKtide | 1000 | 13 | 1000 | Mg | 5 | Staurosporine | | RET[M918T] | MSA | CSKtide | 1000 | 4.2 | 1000 | Mg | 5 | Staurosporine | | RET[S891A] | MSA | CSKtide | 1000 | 11 | 1000 | Mg | 5 | Staurosporine | | RET[Y791F] | MSA | CSKtide | 1000 | 29 | 1000 | Mg | 5 | Staurosporine | | ROCK1 | MSA | LIMKtide | 1000 | 3.1 | 1000 | Mg | 5 | Staurosporine | | ROCK2 | MSA | LIMKtide | 1000 | 7.4 | 1000 | Mg | 5 | Staurosporine | | RON | MSA | Srctide | 1000 | 27 | 1000 | Mg | 5 | Staurosporine | | ROS | MSA | IRS1 | 1000 | 37 | 1000 | Mg | 5 | Staurosporine | | RSK1 | MSA | S6K peptide
(N-FL) | 1000 | 21 | 1000 | Mg | 5 | Staurosporine | | RSK2 | MSA | S6K peptide
(N-FL) | 1000 | 14 | 1000 | Mg | 5 | Staurosporine | | RSK3 | MSA | S6K peptide
(N-FL) | 1000 | 9.9 | 1000 | Mg | 5 | Staurosporine | | RSK4 | MSA | S6K peptide
(N-FL) | 1000 | 20 | 1000 | Mg | 5 | Staurosporine | | SGK | MSA | SGKtide | 1000 | 52 | 1000 | Mg | 5 | Staurosporine | | SIK ¹⁾ | MSA | AMARA peptide | 1000 | 47 | 1000 | Mg | 5 | Staurosporine | | SRC | MSA | Srctide | 1000 | 31 | 1000 | Mg | 5 | Staurosporine | | SRM | MSA | Blk/Lyntide | 1000 | 38 | 1000 | Mg | 5 | Staurosporine | | SYK | MSA | Blk/Lyntide | 1000 | 59 | 1000 | Mg | 5 | Staurosporine | | TAK1-TAB1 | MSA | LRRKtide | 1000 | 37 | 1000 | Mg | 1.25 | Staurosporine | | TAOK2 ¹⁾⁷⁾ | MSA | TAOKtide | 1000 | 39 | 1000 | Mg | 5 | Staurosporine | | TBK1 | MSA | CKtide | 1000 | 21 | 1000 | Mg | 5 | Staurosporine | | TEC | MSA | Srctide | 1000 | 55 | 1000 | Mg | 5 | Staurosporine | | TIE2 | MSA | Blk/Lyntide | 1000 | 94 | 1000 | Mg | 5 | Staurosporine | | TNIK | MSA | Moesin-derived peptide | 1000 | 16 | 1000 | Mg | 5 | Staurosporine | | TNK1 ¹⁾ | MSA | CSKtide | 1000 | 71 | 1000 | Mg | 5 | Staurosporine | | TRKA | MSA | CSKtide | 1000 | 65 | 1000 | Mg | 5 | Staurosporine | | TRKB | MSA | Srctide | 1000 | 80 | 1000 | Mg | 5 | Staurosporine | | TRKC | MSA | Srctide | 1000 | 47 | 1000 | Mg | 5 | Staurosporine | | TSSK1 | MSA | GS peptide | 1000 | 11 | 1000 | Mg | 5 | Staurosporine | | TXK ¹⁾ | MSA | Srctide | 1000 | 110 | 1000 | Mg | 5 | Staurosporine | | TYK2 ¹⁾ | MSA | Srctide | 1000 | 18 | 1000 | Mg | 5 | Staurosporine | | TYRO3 | MSA | CSKtide | 1000 | 80 | 1000 | Mg | 5 | Staurosporine | | YES | MSA | Srctide | 1000 | 13 | 1000 | Mg | 5 | Staurosporine | | YES[T348I] | MSA | Srctide | 1000 | 8.5 | 1000 | Mg | 5 | Staurosporine | | ZAP70 | MSA | Blk/Lyntide | 1000 | 3.3 | 1000 | Mg, Mn | 5, 1 | Staurosporine | - 1) Reaction time is 5 hours. - 2) Cantharidin mixed in Substrate/ATP/Metal solution is added at the final concentration of 20 μM . - 3) CaCl₂ and Calmodulin mixed in Substrate/ATP/Metal solution are added at the final concentration of 1 mM and 10 µg/ml, respectively. - 4) cGMP mixed in Substrate/ATP/Metal solution is added at the final concentration of $5 \mu M$. - 5) Phosphatidylserine and Diacyl Glycerol mixed in Substrate/ATP/Metal solution are added at the final concentration of 50 μ g/mL and 5 μ g/mL, respectively. - 6) Sodium orthovanadate mixed in Substrate/ATP/Metal solution is added at the final concentration of 25 μ M. - 7) Cantharidin mixed in Substrate/ATP/Metal solution is added at the final concentration of 10 μ M. - 8) PIFtide and Cantharidin mixed in Substrate/ATP/Metal solution are added at the final concentration of 2 µM and 20 µM, respectively. - 9) TPX2 peptide mixed in Substrate/ATP/Metal solution is added at the final concentration of 200 nM. Cascade assay | Kinase | Platform | Substrate | | ATP (μM) | | Metal | | D ''' 1 | |----------------------|----------|----------------|-------------|----------|-------|-------|------|------------------| | | Platform | Name | (nM) | Km | Assay | Name | (mM) | Positive control | | BRAF | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | ZM336372 | | BRAF[V600E] | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | ZM336372 | | COT | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | Staurosporine | | DLK ¹⁾ | MSA | MAP2K4, MAP2K7 | 0.5,
0.5 | - | 1000 | Mg | 5 | Staurosporine | | MAP2K1 | MSA | Erk2 | 2.5 | - | 1000 | Mg | 5 | Staurosporine | | MAP2K2 | MSA | Erk2 | 2.5 | - | 1000 | Mg | 5 | Staurosporine | | MAP2K3 | MSA | p38a | 10 | - | 1000 | Mg | 5 | Staurosporine | | MAP2K4 ¹⁾ | MSA | JNK2 | 50 | - | 1000 | Mg | 5 | Staurosporine | | MAP2K5 ¹⁾ | MSA | Erk5 | 50 | - | 1000 | Mg | 5 | Staurosporine | | MAP2K6 | MSA | p38a | 10 | - | 1000 | Mg | 5 | Staurosporine | | MAP2K7 ¹⁾ | MSA | JNK2 | 50 | - | 1000 | Mg | 5 | Staurosporine | | MAP3K1 | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | Staurosporine | | MAP3K2 ¹⁾ | MSA | MAP2K4, MAP2K7 | 0.5,
0.5 | - | 1000 | Mg | 5 | Staurosporine | | MAP3K3 | MSA | MAP2K6 | 1 | - | 1000 | Mg | 5 | Staurosporine | | MAP3K4 | MSA | MAP2K6 | 1 | - | 1000 | Mg | 5 | Staurosporine | | MAP3K5 | MSA | MAP2K6 | 1 | - | 1000 | Mg | 5 | Staurosporine | | MLK1 | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | Staurosporine | | MLK2 | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | Staurosporine | | MLK3 | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | Staurosporine | | MOS | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | Staurosporine | | RAF1 | MSA | MAP2K1 | 1 | - | 1000 | Mg | 5 | ZM336372 | ¹⁾ Reaction time is 5 hours. #### Substrate information of cascade assay | Kinase | Substrate | | | | | | | | |-------------|----------------|----------|------|------|----------------------|------|--|--| | | MAP2K | (nM) | MAPK | (nM) | peptide | (nM) | | | | BRAF | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | | BRAF[V600E] | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | | COT | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | | DLK | MAP2K4, MAP2K7 | 0.5, 0.5 | JNK2 | 50 | Modified Erktide | 1000 | | | | MAP2K1 | - | - | Erk2 | 2.5 | Modified Erktide | 1000 | | | | MAP2K2 | - | - | Erk2 | 2.5 | Modified Erktide | 1000 | | | | MAP2K3 | - | - | p38α | 10 | Modified Erktide | 1000 | | | | MAP2K4 | - | - | JNK2 | 50 | Modified Erktide | 1000 | | | | MAP2K5 | - | - | Erk5 | 50 | EGFR-derived peptide | 1000 | | | | MAP2K6 | - | - | p38α | 10 | Modified Erktide | 1000 | | | | MAP2K7 | - | - | JNK2 | 50 | Modified Erktide | 1000 | | | | MAP3K1 | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | | MAP3K2 | MAP2K4, MAP2K7 | 0.5, 0.5 | JNK2 | 50 | Modified Erktide | 1000 | | | | MAP3K3 | MAP2K6 | 1 | p38α | 10 | Modified Erktide | 1000 | | | | MAP3K4 | MAP2K6 | 1 | p38α | 10 | Modified Erktide | 1000 | | | | MAP3K5 | MAP2K6 | 1 | p38α | 10 | Modified Erktide | 1000 | | | | MLK1 | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | | MLK2 | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | | MLK3 | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | | MOS | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | | RAF1 | MAP2K1 | 1 | Erk2 | 2.5 | Modified Erktide | 1000 | | | # Data analysis The readout value of reaction control (complete reaction mixture) is set as a 0% inhibition, and the readout value of background (Enzyme(-)) is set as a 100% inhibition, then the percent inhibition of each test solution is calculated. IC_{50} value is calculated from concentration vs. %Inhibition curves by fitting to a four parameter logistic curve. http://www.carnabio.com Carna Biosciences, Inc. BMA 3F, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047 JAPAN TEL: 078-302-7091 / FAX: 078-302-7086 E-mail:
info@carnabio.com Carna's wholly-owned subsidiary # CarnaBio USA, Inc. 209 West Central Street, Suite 307, Natick, MA 01760 USA TEL: +1-508-650-1244 / Toll-Free: +1-888-645-1233 E-mail: orders@carnabio.com / FAX: +1-508-650-1722